A bimodal pattern of mortality in systemic lupus erythematosus (SLE) exists. Early-stage deaths are predominantly caused by infection, whereas later-stage deaths are mainly caused by atherosclerotic disease. Further, although SLE-related mortality has reduced considerably in recent years, cardiovascular (CV) events remain one of the leading causes of death in people with SLE. Accelerated atherosclerosis in SLE is attributed to both an increase in traditional CV risk factors and the inflammatory effects of SLE itself. Many of these changes occur within the microenvironment of the vascular-immune interface, the site of atherosclerotic plaque development. Here, an intimate interaction between endothelial cells, vascular smooth muscle cells, and immune cells dictates physiological vs pathological responses to a chronic type 1 interferon environment. Low-density neutrophils (LDNs) have also been implicated in eliciting vasculature-damaging effects at such lesion sites. These changes are thought to be governed by dysfunctional metabolism of immune cells in this niche due at least in part to the chronic induction of type 1 interferons. Understanding these novel pathophysiological mechanisms and metabolic pathways may unveil potential innovative pharmacological targets and therapeutic opportunities for atherosclerosis, as well as shed light on the development of premature atherosclerosis in patients with SLE who develop CV events.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3899/jrheum.2023-0833 | DOI Listing |
JAMA
January 2025
CRIMM, Center Research and Innovation of Myeloproliferative Neoplasms, University of Florence, AOU Careggi, Florence, Italy.
Importance: Essential thrombocythemia, a clonal myeloproliferative neoplasm with excessive platelet production, is associated with an increased risk of thrombosis and bleeding. The annual incidence rate of essential thrombocythemia in the US is 1.5/100 000 persons.
View Article and Find Full Text PDFInt Immunol
January 2025
Division of Innate Immunity, The Institute of Medical Science, The University of Tokyo; Minato-ku, Tokyo 108-8639, Japan.
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by the production of autoantibodies and damage to multiple organs. Glomerulonephritis, a manifestation involving glomerular deposition of immune complexes and complement components, significantly contributes to disease morbidity. Although the endosomal single-stranded RNA sensor TLR7 is known to drive glomerulonephritis by promoting autoantibody production in B cells, the contribution of macrophage TLR7 responses to glomerulonephritis remains poorly understood.
View Article and Find Full Text PDFThis 30-color panel was developed to enable the enumeration and purification of distinct circulating immune cell subsets implicated in the pathogenesis of systemic autoimmune diseases including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic sclerosis (SSc; scleroderma), Sjögren's disease (SjD), idiopathic inflammatory myopathy (IIM), and others. While designed for application to peripheral blood mononuclear cells, the inclusion of CD45 coupled with the ability to extract cellular autofluorescence spectral signatures enables the application of this panel to other tissue types. Of the 30 total markers, this panel employs 18 markers to profile T cell subsets consisting of different memory subsets and T helper polarities, > 10 markers to profile B cell subsets including double-negative B cells, and a total of 8 lineage markers to identify immune lineages including monocyte and natural killer cell subsets, conventional dendritic cells, plasmacytoid dendritic cells, and basophils.
View Article and Find Full Text PDFLAIR1 is an inhibitory receptor broadly expressed on human immune cells, including B cells. LAIR1 has been shown to modulate BCR signaling, however, it is still unclear whether its suppressive activity can be a negative regulator for autoreactivity. In this study, we demonstrate the LAIR1 expression profile on human B cells and prove its regulatory function and relationships to B cell autoreactivity.
View Article and Find Full Text PDFFront Immunol
January 2025
Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, United States.
While durable antibody responses from long-lived plasma cell (LLPC) populations are important for protection against pathogens, LLPC may be harmful if they produce antibodies against self-proteins or self-nuclear antigens as occurs in autoimmune diseases such as systemic lupus erythematosus (SLE). Thus, the elimination of autoreactive LLPC may improve the treatment of antibody-driven autoimmune diseases. However, LLPC remain a challenging therapeutic target.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!