Icaritin Sensitizes Thrombin- and TxA2-Induced Platelet Activation and Promotes Hemostasis via Enhancing PLCγ2-PKC Signaling Pathways.

Thromb Haemost

State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi City, Shandong Province, China.

Published: August 2024

Background:  Vascular injury results in uncontrollable hemorrhage in hemorrhagic diseases and excessive antithrombotic therapy. Safe and efficient hemostatic agents which can be orally administered are urgently needed. Platelets play indispensable roles in hemostasis, but there is no drug exerting hemostatic effects through enhancing platelet function.

Methods:  The regulatory effects of icaritin, a natural compound isolated from , on the dense granule release, thromboxane A (TxA) synthesis, α-granule release, activation of integrin αIIbβ3, and aggregation of platelets induced by multiple agonists were investigated. The effects of icaritin on tail vein bleeding times of warfarin-treated mice were also evaluated. Furthermore, we investigated the underlying mechanisms by which icaritin exerted its pharmacological effects.

Results:  Icaritin alone did not activate platelets, but significantly potentiated the dense granule release, α-granule release, activation of integrin αIIbβ3, and aggregation of platelets induced by thrombin and U46619. Icaritin also shortened tail vein bleeding times of mice treated with warfarin. In addition, phosphorylated proteome analysis, immunoblotting analysis, and pharmacological research revealed that icaritin sensitized the activation of phospholipase Cγ2 (PLCγ2)-protein kinase C (PKC) signaling pathways, which play important roles in platelet activation.

Conclusion:  Icaritin can sensitize platelet activation induced by thrombin and TxA through enhancing the activation of PLCγ2-PKC signaling pathways and promote hemostasis, and has potential to be developed into a novel orally deliverable therapeutic agent for hemorrhages.

Download full-text PDF

Source
http://dx.doi.org/10.1055/a-2245-8457DOI Listing

Publication Analysis

Top Keywords

signaling pathways
12
platelet activation
8
plcγ2-pkc signaling
8
effects icaritin
8
dense granule
8
granule release
8
α-granule release
8
release activation
8
activation integrin
8
integrin αiibβ3
8

Similar Publications

Gut microbial communities and transcriptional profiles of black soldier fly (Hermitia illucens) larvae fed on fermented sericulture waste.

Waste Manag

January 2025

Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology/ Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China. Electronic address:

Sericulture waste poses significant challenges to industrial and environmental safety. Black soldier fly larvae (BSFL) offer a promising solution for organic waste management by converting it into insect protein. This study aimed to develop a microbial fermented method for utilizing sericulture waste to feed BSFL and explore the underlying mechanisms.

View Article and Find Full Text PDF

Constitutive loss of kynurenine-3-monooxygenase changes circulating kynurenine metabolites without affecting systemic energy metabolism.

Am J Physiol Endocrinol Metab

January 2025

Molecular and Cellular Exercise Physiology, Department of physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.

Kynurenic acid (KYNA) and quinolinic acid (QUIN) are metabolites of the kynurenine pathway of tryptophan degradation with opposing biological activities in the central nervous system. In the periphery, KYNA is known to positively affect metabolic health, whereas the effects of QUIN remain less explored. Interestingly, metabolic stressors, including exercise and obesity, differentially change the balance between circulating KYNA and QUIN.

View Article and Find Full Text PDF

Current in vitro models of 3D tumor spheroids within the microenvironment have emerged as promising tools for understanding tumor progression and potential drug responses. However, creating spheroids with functional vasculature remains challenging in a controlled and high-throughput manner. Herein, a novel open 3D-microarray platform is presented for a spheroid-endothelium interaction (ODSEI) chip, capable of arraying more than 1000 spheroids on top of the vasculature, compartmentalized for single spheroid-level analysis of drug resistance, and allows for the extraction of specific spheroids for further analysis.

View Article and Find Full Text PDF

The dysfunction of stress granules (SGs) plays a crucial role in the pathogenesis of various neurological disorders, with T cell intracellular antigen 1 (TIA1) being a key component of SGs. However, the role and mechanism of TIA1-mediated SGs in experimental autoimmune encephalomyelitis (EAE) remain unclear. In this study, upregulation of TIA1, its translocation from the nucleus to the cytoplasm, and co-localization with G3BP1 (a marker of SGs) are observed in the spinal cord neurons of EAE mice.

View Article and Find Full Text PDF

Liver-Secreted Extracellular Vesicles Promote Cirrhosis-Associated Skeletal Muscle Injury Through mtDNA-cGAS/STING Axis.

Adv Sci (Weinh)

January 2025

Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, 610041, China.

Skeletal muscle atrophy (sarcopenia) is a serious complication of liver cirrhosis, and chronic muscle inflammation plays a pivotal role in its pathologenesis. However, the detailed mechanism through which injured liver tissues mediate skeletal muscle inflammatory injury remains elusive. Here, it is reported that injured hepatocytes might secrete mtDNA-enriched extracellular vesicles (EVs) to trigger skeletal muscle inflammation by activating the cGAS-STING pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!