Microbiome-based solutions are regarded key for sustainable agroecosystems. However, it is unclear how agricultural practices affect the rhizosphere microbiome, plant-microorganism interactions and crop performance under field conditions. Therefore, we installed root observation windows in a winter wheat field cultivated either under long-term mouldboard plough (MP) or cultivator tillage (CT). Each tillage practice was also compared at two nitrogen (N) fertilization intensities, intensive (recommended N-supply with pesticides/growth regulators) or extensive (reduced N-supply, no fungicides/growth regulators). Shoot biomass, root exudates and rhizosphere metabolites, physiological stress indicators, and gene expression were analyzed together with the rhizosphere microbiome (bacterial/archaeal 16S rRNA gene, fungal ITS amplicon, and shotgun metagenome sequencing) shortly before flowering. Compared to MP, the rhizosphere of CT winter wheat contained more primary and secondary metabolites, especially benzoxazinoid derivatives. Potential copiotrophic and plant-beneficial taxa (e.g. Bacillus, Devosia, and Trichoderma) as well as functional genes (e.g. siderophore production, trehalose synthase, and ACC deaminase) were enriched in the CT rhizosphere, suggesting that tillage affected belowground plant-microorganism interactions. In addition, physiological stress markers were suppressed in CT winter wheat compared to MP. In summary, tillage practice was a major driver of crop performance, root deposits, and rhizosphere microbiome interactions, while the N-fertilization intensity was also relevant, but less important.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10847717PMC
http://dx.doi.org/10.1093/femsec/fiae003DOI Listing

Publication Analysis

Top Keywords

winter wheat
16
rhizosphere microbiome
12
nitrogen fertilization
8
plant-microorganism interactions
8
crop performance
8
tillage practice
8
physiological stress
8
rhizosphere
7
tillage
5
long-term conservation
4

Similar Publications

f. sp. Exhibited a Significant Change in Virulence and Race Frequency in Xinjiang, China.

J Fungi (Basel)

December 2024

Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830000, China.

Xinjiang is an important region due to its unique epidemic characteristics of wheat stripe rust disease caused by f. sp. .

View Article and Find Full Text PDF

Our study investigates the intra- and interpopulation diversity of phytopathogenic fungi, using as a model organism. A total of 136 strains, representing two populations, were collected from different winter cereal crops (rye, wheat, and triticale) across two agrocenoses. In these strains, we analyzed and compared genetic and phenotypic traits, exploring potential relationships between them.

View Article and Find Full Text PDF

Gridded drought response assessment of winter wheat in Oklahoma using big data and AquaCrop-OS.

Sci Total Environ

December 2024

USDA, Agricultural Research Service, Southeast Area, Stoneville, MS 38776, USA.

Winter wheat is the most dominant crop in Oklahoma and critically important to the economy of agricultural industry in this state and the region. However, weather anomalies such as droughts, which are frequent in Oklahoma, pose serious threats to winter wheat yield. This study was conducted to assess the effects of droughts on the simulated yield of dryland winter wheat (Y) in Oklahoma employing a gridded approach with the AquaCrop Open Source (AquaCrop-OS).

View Article and Find Full Text PDF

Background: Senescence is a complex developmental process that is regulated by a multitude of environmental, genetic, and physiological factors. Optimizing the timing and dynamics of this process has the potential to significantly impact crop adaptation to future climates and for maintaining grain yield and quality, particularly under terminal stress. Accurately capturing the dynamics of senescence and isolating the genetic variance component requires frequent assessment as well as intense field testing.

View Article and Find Full Text PDF

Background: Septoria tritici blotch (STB) is one of the most damaging wheat diseases worldwide, and the development of resistant cultivars is of paramount importance for sustainable crop management. However, the genetic basis of the resistance present in elite wheat cultivars remains largely unknown, which limits the implementation of this strategy. A collection of 285 wheat cultivars originating mostly from France was challenged with ten Zymoseptoria tritici isolates at the seedling stage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!