Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the present study, metal organic frameworks (MOFs) and aminated graphitic carbonaceous structure (ACS-RGO) through chemical synthesis prepared by a simple precipitation method and used for diazinon removal. Several techniques such as XRD , FESEM and FTIR were applied for identification of MOF-5 and ACS-RGO. Also, response surface methodology (RSM) was employed in this work to look at the effectiveness of diazinon adsorption. To forecast pesticide removal, we applied artificial neural network (ANN) and Box-Behnken Design (BBD) models. For the ANN model, a sensitivity analysis was also performed. The effect of independent variables like solution pH, various concentrations of diazinon, MOFs and ACS-RGO adsorbent dose and contact time were assessed to find out the optimum conditions. Based on the model prediction, the optimal condition for adsorption ACS-RGO and MOF-5 were determined to be pH 6.6 and 6.6, adsorbent dose of 0.59 and 0.906 g/L, and mixing time of 52.15 and 36.96 min respectively. These conditions resulted in 96.69% and 80.62% diazinon removal using ACS-RGO and MOF-5, respectively. Isotherm studies proved the adsorption of ACS-RGO and MOF-5 following the Langmuir isotherm model for diazinon removal. Diazinon removal followed by the pseudo-second and Pseudo-first order kinetics model provides a better fit for analyzing the kinetic data associated with pesticide adsorption for ACS-RGO and MOF-5, respectively. Based on the obtained results, the predicted values for the efficiency of diazinon removal with the ANN and BBD were similar (R=0.98). Therefore, two models were able to predict diazinon removal by ACS-RGO and MOF-5.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.141222 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!