The existing 3D printing methods exhibit certain fabrication-dependent limitations for printing curved constructs that are relevant for many tissues. Four-dimensional (4D) printing is an emerging technology that is expected to revolutionize the field of tissue engineering and regenerative medicine (TERM). 4D printing is based on 3D printing, featuring the introduction of time as the fourth dimension, in which there is a transition from a 3D printed scaffold to a new, distinct, and stable state, upon the application of one or more stimuli. Here, we present an overview of the current developments of the 4D printing technology for TERM, with a focus on approaches to achieve temporal changes of the shape of the printed constructs that would enable biofabrication of highly complex structures. To this aim, the printing methods, types of stimuli, shape-shifting mechanisms, and cell-incorporation strategies are critically reviewed. Furthermore, the challenges of this very recent biofabrication technology as well as the future research directions are discussed. Our findings show that the most common printing methods so far are stereolithography (SLA) and extrusion bioprinting, followed by fused deposition modelling, while the shape-shifting mechanisms used for TERM applications are shape-memory and differential swelling for 4D printing and 4D bioprinting, respectively. For shape-memory mechanism, there is a high prevalence of synthetic materials, such as polylactic acid (PLA), poly(glycerol dodecanoate) acrylate (PGDA), or polyurethanes. On the other hand, different acrylate combinations of alginate, hyaluronan, or gelatin have been used for differential swelling-based 4D transformations. TERM applications include bone, vascular, and cardiac tissues as the main target of the 4D (bio)printing technology. The field has great potential for further development by considering the combination of multiple stimuli, the use of a wider range of 4D techniques, and the implementation of computational-assisted strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1758-5090/ad1e6fDOI Listing

Publication Analysis

Top Keywords

printing methods
12
printing
9
tissue engineering
8
engineering regenerative
8
regenerative medicine
8
shape-shifting mechanisms
8
term applications
8
printed shape-shifting
4
shape-shifting biomaterials
4
biomaterials tissue
4

Similar Publications

Context: Gun violence negatively impacts not only victims but also their families and surrounding communities. Resources and counseling services may be available to support families affected by gun violence, but the families and their clinicians may not know about these resources or how to access them.

Objectives: The objective of this study was to investigate the impact of a clinician-directed educational program on patient reports of their discussions with their physician regarding gun violence, prevention, and available resources for support and treatment.

View Article and Find Full Text PDF

Background/purpose: The obturation of canals with irregular structures is still a challenge for single cone obturation technique (SC). The purpose of this study was to evaluate the presence and distribution of voids using SC with different sealer placement methods in the canal with a simulated band-shaped isthmus.

Materials And Methods: 3D-printed root canal models with band-shaped isthmuses were randomly divided into four groups according to different obturation methods.

View Article and Find Full Text PDF

Background/purpose: The advent of digital technologies has significantly transformed the current dentistry, particularly in the fabrication of removable dental prostheses. A bibliometric analysis of literature may provide a direction of research hotspots and future trends in this field.

Materials And Methods: Data were retrieved from Web of Science database for the analysis of literature on digital technologies for removable dental prostheses.

View Article and Find Full Text PDF

A Systematic Review of Research on Guided Access Cavity Preparation Endodontic Treatment: Dentin Preservation Perspectives.

Clin Cosmet Investig Dent

January 2025

Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Bandung, West Java, Indonesia.

Purpose: Guided access cavity preparation (GACP) is an endodontic procedure utilizing stents, guide sleeves, or dynamic guides to facilitate the proper formation of access cavities. This paper aims to evaluate the significance of research on guided access cavity preparation in endodontic treatment concerning dentin preservation. In the context of dentin preservation, this paper provides a thorough scoping review of a variety of methodologies for evaluating the accuracy of guided access cavity preparation.

View Article and Find Full Text PDF

The use of mesh repair is a frequently employed technique in the clinical management of abdominal wall defects. However, for intraperitoneal onlay mesh (IPOM), the traditional mesh requires additional fixation methods, and these severely limit its application in the repair of abdominal wall defects. We drew inspiration from the adhesion properties of mussels for the present study, functionalized carboxymethyl cellulose (CMC) with dopamine (DA), and added polyvinyl alcohol (PVA) to the composite to further improve the wet adhesive ability of hydrogels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!