This work introduces a systematic approach for the development of Kretschmann configuration-based biosensors designed for non-invasive urine glucose detection. The methodology encompasses the utilization of various semiconductors, including Silicon (Si), Germanium (Ge), Gallium Nitride (GaN), Aluminum Nitride (AlN), and Indium Nitride (InN), in combination with a bimetallic layer (comprising Au and Ag films of equal thickness) to enhance the biosensor sensitivity. Additionally, 2D nanomaterials, such as Black Phosphorus and Graphene, are integrated into the semiconductor layers to enhance performance further. These configurations are meticulously optimized through the application of the transfer matrix method (TMM), and the sensing parameters are assessed using the angular modulation method. Among the semiconductors, AlN and GaN exhibit superior results. On these substrates, Graphene and Black phosphorous (BP) layers are applied, resulting in four final structures (thicknesses in nm): BK7/Au(26)/Ag(26)/Si(6)/BP(0.53)/Biosample, BK7/Au(26)/Ag(26)/AlN(14)/BP(0.53)/Biosample, BK7/Au(26)/Ag(26)/GaN(12)/BP(0.53)/Biosample, and BK7/Au(26)/Ag(26)/GaN(12)/Graphene(0.34)/Biosample. These biosensors achieve Sensitivity(° /RIU) and Figure of Merit (FoM) (1/RIU) of 380, 360, 440, 400, and 58.5, 90, 90.65, and 82.4, respectively. Subsequently, these high-performing sensors undergo testing with actual urine glucose samples. Among them, two biosensors, BK7/Au(26)/Ag(26)/AlN(14)/BP (0.53)/Biosample and BK7/Au(26)/Ag(26)/GaN(14)/Graphene(0.34)/Biosample, exhibit outstanding performance, with sensitivities (° /RIU) and FoM (1/RIU) of 394.44 & 294.44, and 112.6 & 92.01 respectively. A comparison is also made with relevant previously published work, revealing improved performance in glucose detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNB.2024.3354571 | DOI Listing |
Expert Opin Drug Metab Toxicol
January 2025
The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
Introduction: Ertugliflozin is the fourth sodium-glucose co-transporter (SGLT2) inhibitor approved by the US FDA in 2017 for the treatment of type 2 diabetes mellitus.
Areas Covered: The main purpose of this review is to evaluate the clinical efficacy and safety of ertugliflozin. We conducted a search of relevant literature on ertugliflozin in the PubMed and Web of Science databases up to 22 October 2024.
Sci Rep
January 2025
Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran.
The g-C3N4/CS biosensor was designed, fabricated, and tested using compounds such as glucose, urine, lactose, and flutamide at a molarity of 10 µM, which could demonstrate a high sensitivity of 200 μm-1 for flutamide. Powerful effective medium theory and FDTD simulation were used to predict the most favorable mode and plasmonic properties of a graphite carbon nitride and chitosan nanocomposite. The research also explores the characteristics of surface plasmon resonance exhibited by the nanocomposite as the chitosan content is adjusted.
View Article and Find Full Text PDFJ Clin Hypertens (Greenwich)
January 2025
Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
The aim of this study was to explore whether 24-h ambulatory central (aortic) blood pressure (BP) has an advantage over office central aortic BP in screening for hypertension-mediated target organ damage (HMOD). A total of 714 inpatients with primary hypertension and the presence of several cardiovascular risk factors or complications involving clinical HMOD were enrolled. Twenty-four hour central aortic BP was measured by means of a noninvasive automated oscillometric device (Mobil-O-Graph).
View Article and Find Full Text PDFJ Pharmacokinet Pharmacodyn
January 2025
Department of Clinical Pharmacy and Pharmacy Administration, West China school of Pharmacy, Sichuan University, Chengdu, 610064, China.
Alogliptin is a highly selective inhibitor of dipeptidyl peptidase-4 and primarily excreted as unchanged drug in the urine, and differences in clinical outcomes in renal impairment patients increase the risk of serious adverse reactions. In this study, we developed a comprehensive physiologically-based quantitative systematic pharmacology model of the alogliptin-glucose control system to predict plasma exposure and use glucose as a clinical endpoint to prospectively understand its therapeutic outcomes with varying renal function. Our model incorporates a PBPK model for alogliptin, DPP-4 activity described by receptor occupancy theory, and the crosstalk and feedback loops for GLP-1-GIP-glucagon, insulin, and glucose.
View Article and Find Full Text PDFKidney Int Rep
January 2025
Department of Cardiovascular Sciences, University of Leicester, Leicester, Leicestershire, UK.
Introduction: Endothelin A (ETA) receptor activation is a driver of proteinuria, kidney inflammation, and fibrosis in IgA nephropathy (IgAN). Atrasentan, a selective ETA receptor antagonist, has potential to reduce proteinuria and preserve kidney function in IgAN. ALIGN (NCT04573478) is a phase 3, randomized, double-blind, placebo-controlled clinical trial of atrasentan in patients with IgAN at high risk of kidney function loss.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!