Diabetes mellitus is a common metabolic disorder affecting different body organs; one of its serious complications is diabetic cardiomyopathy (DCM). Thus, finding more cardiopreserving agents to protect the heart against such illness is a critical task. For the first time, we planned to study the suspected role of diacerein (DIA) in ameliorating DCM in juvenile rats and explore different mechanisms mediating its effect including inflammasome/caspase1/interleukin1β pathway. Four-week-aged juvenile rats were randomly divided into groups; the control group, diacerein group, diabetic group, and diabetic-treated group. Streptozotocin (45 mg/kg) single intraperitoneal (i.p.) dose was administered for induction of type 1 diabetes on the 1st day which was confirmed by detecting blood glucose level. DIA was given in a dose of 50 mg/kg/day for 6 weeks to diabetic and non-diabetic rats, then we evaluated different inflammatory, apoptotic, and oxidative stress parameters. Induction of DCM succeeded as there were significant increases in cardiac enzymes, heart weights, fasting blood glucose level (FBG), and glycosylated hemoglobin (HbA1c) associated with elevated blood pressure (BP), histopathological changes, and increased caspase 3 immunoexpression. Furthermore, there was an increase of malondialdehyde (MDA), inflammasome, caspase1, angiotensin II, nuclear factor kappa-B (NF-κB), tumor necrosis factor-α (TNFα), and interleukin 1β (IL1β). However, antioxidant parameters such as reduced glutathione (GSH) and total antioxidant capacity (TAC) significantly declined. Fortunately, DIA reversed the diabetic cardiomyopathy changes mostly due to the observed anti-inflammatory, antioxidant, and anti-apoptotic properties with regulation of blood glucose level.DIA has an ability to regulate DCM-associated biochemical and histopathological disturbances.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166746 | PMC |
http://dx.doi.org/10.1007/s00210-023-02921-8 | DOI Listing |
Diabetes Metab Syndr Obes
December 2024
Department of Cardiology, Yan'an People's Hospital, Yan'an, 716000, People's Republic of China.
Background: Morin is a flavonol with beneficial effects on diabetic-related injuries. However, the effect of morin on diabetic cardiomyopathy and its association with autophagy, apoptosis, inflammation, and oxidative stress remains unclear. The current study aimed to reveal the mechanisms underlying morin-mediated protection against cardiac failure in diabetic rats.
View Article and Find Full Text PDFRev Cardiovasc Med
December 2024
Department of Biomedical Science, School of Health and Life Sciences, Teesside University, TS1 3BX Middlesbrough, UK.
Diabetes mellitus (DM) affects 537 million people as of 2021, and is projected to rise to 783 million by 2045. This positions DM as the ninth leading cause of death globally. Among DM patients, cardiovascular disease (CVD) is the primary cause of morbidity and mortality.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.
Endothelial cells and high glucose-induced endothelial dysfunction are the common origin of chronic diabetic complications such as retinopathy, nephropathy, and cardiomyopathy. Yet their common origins, the vascular manifestations of such complications are different. We examined the basal heterogeneity between microvascular endothelial cells(MECs) from the retina, kidneys, and heart, as well as their differential responses to hyperglycemia in diabetes.
View Article and Find Full Text PDFWorld J Cardiol
December 2024
Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China.
The maintenance of intracellular and extracellular adenosine triphosphate (ATP) levels plays a pivotal role in cardiac function. In recent years, burgeoning attention has been directed towards ATP-induced cell death (AICD), revealing it as a distinct cellular demise pathway triggered by heightened extracellular ATP concentrations, distinguishing it from other forms of cell death such as apoptosis and necrosis. AICD is increasingly acknowledged as a critical mechanism mediating the pathogenesis and progression of various cardiovascular maladies, encompassing myocardial ischemia-reperfusion injury, sepsis-induced cardiomyopathy, hypertrophic cardiomyopathy, arrhythmia, and diabetic cardiomyopathy.
View Article and Find Full Text PDFWorld J Cardiol
December 2024
Department of Biochemistry, School of Medicine, College of Medicine, China Medical University, Taichung 404328, Taiwan.
This article addresses the substantial findings of a study on sodium-dependent glucose transporter 2 inhibitors (SGLT2is) and their effects on myocardial function in patients with type 2 diabetes and asymptomatic heart failure. The editorial explores the broader implications of the study findings for clinical practice, thus highlighting the pivotal role of SGLT2is in improving cardiac function, reducing oxidative stress, and attenuating inflammation. It emphasizes the importance of early intervention with SGLT2is in preventing the progression of diabetic cardiomyopathy; hence, these inhibitors have the potential to transform the management of asymptomatic heart failure in patients with diabetes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!