A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Wide-angle camouflage detectors by manipulating emissivity using a non-reciprocal metasurface array. | LitMetric

Wide-angle camouflage detectors by manipulating emissivity using a non-reciprocal metasurface array.

Phys Chem Chem Phys

Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, China.

Published: January 2024

Camouflage detectors that can detect incoming radiation from any angle without being detected are extremely important in stealth, guided missile, and heat-seeking missile industries. In order to accomplish this, the absorption and emission processes must be manipulated simultaneously. However, Kirchhoff's fundamental law suggests that absorption and emission are always in the same direction () = (), , absorption and emission are reciprocal. This means that the emission from the detector always points back to the source, for example towards a laser source in a guided missile. Thus, detector emission serves as a complementary measure to hide an object. Here, we present a novel camouflage detector that uses a nonreciprocal metasurface array to independently detect the direction of the incoming radiation as well as manipulate its emissivity response. This is accomplished by using a magneto-optical material called indium arsenide (InAs), which breaks Lorentz reciprocity and Kirchhoff's fundamental law such that () ≠ (). This design results in the following absorption and emission: () = (-). Nine metasurfaces were designed, optimized, and operated at different incident angles from +50° to -50° at a wavelength of 13 μm. Furthermore, by keeping all metasurfaces in a pixilated array form, one could make a device that works over the full ±50° range. Potentially, this array of nonreciprocal metasurfaces can be used to fabricate thermal emitters or solar-harvesting systems.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp05097aDOI Listing

Publication Analysis

Top Keywords

absorption emission
16
camouflage detectors
8
metasurface array
8
incoming radiation
8
guided missile
8
kirchhoff's fundamental
8
fundamental law
8
emission
6
wide-angle camouflage
4
detectors manipulating
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!