Neutrophil-directed motility is necessary for host defense, but its dysregulation can also cause collateral tissue damage. Actinopathies are monogenic disorders that affect the actin cytoskeleton and lead to immune dysregulation. Deficiency in ARPC1B, a component of the Arp2/3 complex, results in vascular neutrophilic inflammation; however, the mechanism remains unclear. Here, we generated human induced pluripotent stem cell (iPSC)-derived neutrophils (denoted iNeutrophils) that are deficient in ARPC1B and show impaired migration and a switch from forming pseudopodia to forming elongated filopodia. We show, using a blood vessel on a chip model, that primary human neutrophils have impaired movement across an endothelium deficient in APRC1B. We also show that the combined deficiency of ARPC1B in iNeutrophils and endothelium results in further reduction in neutrophil migration. Taken together, these results suggest that ARPC1B in endothelium is sufficient to drive neutrophil behavior. Furthermore, the findings provide support for using the iPSC system to understand human neutrophil biology and model disease in a genetically tractable system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10911274 | PMC |
http://dx.doi.org/10.1242/jcs.261774 | DOI Listing |
J Thromb Haemost
November 2024
Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Division of Haematology/Oncology, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada. Electronic address:
Platelets are small, discoid, anucleate blood cells that play key roles in clotting and other functions involved in health and disease. Platelets are derived from bone marrow-resident megakaryocytes, which undergo a complex developmental process where they increase dramatically in size and produce an abundance of organelles destined for platelets. These organelles include mitochondria, lysosomes, peroxisomes, and 2 unique types of secretory organelles: α- and dense (δ-) granules.
View Article and Find Full Text PDFFront Med
November 2024
Department of Pediatric Immunology, Pediatric Basic Sciences, Institute of Child Health, Hacettepe University, Ankara, 06100, Turkey.
Cytoskeletal network dysregulation is a pivotal determinant in various immunodeficiencies and autoinflammatory conditions. This report reviews the significance of actin remodeling in disease pathogenesis, focusing on the Arp2/3 complex and its regulatory subunit actin related protein 2/3 complex subunit 1B (ARPC1B). A spectrum of cellular dysfunctions associated with ARPC1B deficiency, impacting diverse immune cell types, is elucidated.
View Article and Find Full Text PDFAllergol Select
October 2024
Center for Child and Adolescent Health, Helios Hospital Krefeld, Academic Hospital of RWTH Aachen, Krefeld.
EMBO Rep
November 2024
Laboratory of Fungal Pathogenesis, BRIC-Centre for DNA Fingerprinting and Diagnostics, Hyderabad-500039, Telangana, India.
Epithelial-immune cell communication is pivotal to control microbial infections. We show that glycosylphosphatidylinositol-linked aspartyl proteases (Yapsins) of the human opportunistic pathogenic yeast Candida glabrata (Cg) thwart epithelial cell (EC)-neutrophil signalling by targeting the EC protein, Arpc1B (actin nucleator Arp2/3 complex subunit), which leads to actin disassembly and impeded IL-8 secretion by ECs. Further, the diminished IL-8 secretion inhibits neutrophil migration, and protects Cg from the neutrophil-mediated killing.
View Article and Find Full Text PDFSci Rep
September 2024
Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!