Significance: The biomechanical impact of refractive surgery has long been an area of investigation. Changes to the cornea structure cause alterations to its mechanical integrity, but few studies have examined its specific mechanical impact.
Aim: To quantify how the biomechanical properties of the cornea are altered by laser assisted keratomileusis (LASIK) using optical coherence elastography (OCE) in porcine corneas.
Approach: Three OCE techniques, wave-based air-coupled ultrasound (ACUS) OCE, heartbeat (Hb) OCE, and compression OCE were used to measure the mechanical properties of paired porcine corneas, where one eye of the pair was left untreated, and the fellow eye underwent LASIK. Changes in stiffness as a function of intraocular pressure (IOP) before and after LASIK were measured using each technique.
Results: ACUS-OCE showed that corneal stiffness changed as a function of IOP for both the untreated and the treated groups. The elastic wave speed after LASIK was lower than before LASIK. Hb-OCE and compression OCE showed regional changes in corneal strain after LASIK, where the absolute strain difference between the cornea anterior and posterior increased after LASIK.
Conclusions: The results of this study suggest that LASIK may soften the cornea and that these changes are largely localized to the region where the surgery was performed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10787573 | PMC |
http://dx.doi.org/10.1117/1.JBO.29.1.016002 | DOI Listing |
Heliyon
January 2025
BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Australia.
Breast-conserving surgery accompanied by adjuvant radiotherapy is the standard of care for patients with early-stage breast cancer. However, re-excision is reported in 20-30 % of cases, largely because of close or involved tumor margins in the specimen. Several intraoperative tumor margin assessment techniques have been proposed to overcome this issue, however, none have been widely adopted.
View Article and Find Full Text PDFJ Soc Cardiovasc Angiogr Interv
December 2024
Imperial College London, United Kingdom.
Background: The mechanistic association between the hydraulic forces generated during contrast injection and the risk of coronary injury is poorly understood. In this study, we sought to evaluate whether contrast injections increase intracoronary pressures beyond resting levels and estimate the risk of hydraulic propagation of coronary dissections.
Methods: This is a prospective, single-arm, multicenter study that included patients with nonculprit, non-flow-limiting coronaries.
J Soc Cardiovasc Angiogr Interv
December 2024
Philips Healthcare, San Diego, California.
Adv Mater
January 2025
Department of Physics, Pohang University of Science and Technology, 77, Cheongam-ro, Nam-gu, Pohang, 37673, Korea (the Republic of).
Janus materials, a novel class of materials with two faces of different chemical compositions and electronic polarities, offer significant potential for various applications with catalytic reactions, chemical sensing, and optical or electronic responses. A key aspect for such functionalities is face-dependent electronic bipolarity, which is usually limited by the chemical distinction of terminated surfaces and has not been exploited in the semiconducting regime. Here, it is showed that a Janus and Kagome van der Waals (vdW) material NbTeI has ferroelectric-like coherent stacking of the Janus layers and hosts strong electronic bipolar states in the semiconducting regime.
View Article and Find Full Text PDFBMJ Open
December 2024
Westmead Institute for Medical Research, Westmead, New South Wales, Australia
Introduction: Diabetic macular oedema (DMO), a serious ocular complication of diabetic retinopathy (DR), is a leading cause of vision impairment worldwide. If left untreated or inadequately treated, DMO can lead to irreversible vision loss and blindness. Intravitreal injections using antivascular endothelial growth factor (anti-VEGF) and laser are the current standard of treatment for DMO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!