Fano resonance with high Q-factor is considered to play an important role in the field of refractive index sensing. In this paper, we theoretically and experimentally investigate a refractive index sensor with high performance, realizing a new approach to excite multiple Fano resonances of high Q-factor by introducing an asymmetric parameter to generate a quasi-bound state in the continuum (BIC). Combined with the electromagnetic properties, the formation mechanism of Fano resonances in multiple different excitation modes is analyzed and the resonant modes of the three resonant peaks are analyzed as toroidal dipole (TD), magnetic quadrupole (MQ), and magnetic dipole (MD), respectively. The simulation results show that the proposed metastructure has excellent sensing properties with a Q-factor of 3668, sensitivity of 350 nm/RIU, and figure of merit (FOM) of 1000. Furthermore, the metastructure has been fabricated and investigated experimentally, and the result shows that its maximum Q-factor, sensitivity and FOM can reach 634, 233 nm/RIU and 115, respectively. The proposed metastructure is believed to further contribute to the development of biosensors, nonlinear optics, and lasers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10783900PMC
http://dx.doi.org/10.1364/BOE.510149DOI Listing

Publication Analysis

Top Keywords

fano resonances
12
high q-factor
8
proposed metastructure
8
high-q fano
4
resonances all-dielectric
4
all-dielectric metastructures
4
metastructures enhanced
4
enhanced optical
4
optical biosensing
4
biosensing applications
4

Similar Publications

This paper presents a novel investigation of a magnetic sensor that employs Fano/Tamm resonance within the photonic band gap of a one-dimensional crystal structure. The design incorporates a thin layer of gold (Au) alongside a periodic arrangement of Tantalum pentoxide ([Formula: see text]) and Cesium iodide ([Formula: see text]) in the configuration [Formula: see text]. We utilized the transfer matrix method in conjunction with the Drude model to analyze the formation of Fano/Tamm states and the permittivity of the metallic layer, respectively.

View Article and Find Full Text PDF

Resonant Auger Decay in Benzene.

J Phys Chem A

January 2025

Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.

We present ab initio calculations of the resonant Auger spectrum of benzene. In the resonant process, Auger decay ensues following the excitation of a core-level electron to a virtual orbital. Hence, resonant Auger decay gives rise to higher-energy Auger electrons compared to nonresonant decay.

View Article and Find Full Text PDF

We propose two types of structures to achieve the control of Fano and electromagnetically induced transparency (EIT) line shapes, in which dual one-dimensional (1D) photonic crystal nanobeam cavities (PCNCs) are side-coupled to a bus waveguide with different gaps. For the proposed type Ⅰ and type Ⅱ systems, the phase differences between the nanobeam periodic structures of the two cavities are and 0, respectively. The whole structures are theoretically analyzed via the coupled mode theory and numerically demonstrated using the three-dimensional finite-difference time-domain (3D FDTD) method.

View Article and Find Full Text PDF

Fano Resonance in Epsilon-Near-Zero Media.

Phys Rev Lett

December 2024

Department of Electronic Engineering, Tsinghua University, Beijing 100084, China.

Fano resonance is achieved by tuning two coupled oscillators and has exceptional potential for modulating light dispersion. Here, distinct from the classical Fano resonances achieved through photonics methodologies, we introduce the Fano resonance in epsilon-near-zero (ENZ) media with novel electromagnetic properties. By adjusting the background permeability of the ENZ host, the transmission spectrum exhibits various dispersive line shapes and covers the full range of Fano parameter q morphologies, from negative to positive infinity.

View Article and Find Full Text PDF
Article Synopsis
  • The article discusses an ultra-wideband nanoscale metamaterial absorber designed for applications in the visible spectrum, emphasizing its ultrathin and flexible characteristics.
  • The study highlights the effective absorption capabilities of the structure, achieving an impressive maximum absorption rate of 86.66%, with a peak absorption of 99.88% for a single unit cell.
  • The research utilizes numerical analysis methods, like the Finite Difference Time Domain (FDTD), to optimize dispersion and Fano resonance properties, making the metamaterial a promising candidate for applications such as solar energy harvesting and biochemical sensing.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!