Background: The use of artificial intelligence (AI) technology has been growing in the management of intracranial aneurysms (IAs). This study aims to conduct a bibliometric analysis of researches on intracranial aneurysm management with artificial intelligence technology (IAMWAIT) to gain insights into global research trends and potential future directions.
Methods: A comprehensive search of articles and reviews related to IAMWAIT, published from January 1, 1900 to July 20, 2023, was conducted using the Web of Science Core Collection (WoWCC).Visualizations of the bibliometric analysis were generated utilizing WPS Office, Scimago Graphica, VOSviewer, CiteSpace, and R.
Results: A total of 277 papers were included in the study. China emerged as the most prolific country in terms of publications, institutions, cooperating countries, and prolific authors. The United States garnered the highest number of total citations, institutions with the highest citations/H index, cooperating countries (n=9), and 3 of the top 10 cited papers. Both the total number of papers and the citation count exhibited a positive and significant correlation with the gross domestic product (GDP) of countries. The journal with the highest publication frequency was Frontiers in Neurology, while Stroke recorded the highest number of citations, H-index, and impact factor (IF). Areas of primary interest in IAMWAIT, leveraging AI technology, included rupture risk assessment/prediction, computer-assisted diagnosis, outcome prediction, hemodynamics, and laboratory research of IAs.
Conclusions: IAMWAIT is an active area of research that has undergone rapid development in recent years. Future endeavors should focus on broader application of AI algorithms in various sub-fields of IAMWAIT to better suit the real world.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10784100 | PMC |
http://dx.doi.org/10.21037/qims-23-793 | DOI Listing |
Brief Bioinform
November 2024
Biotherapeutics Molecule Discovery, Boehringer Ingelheim Pharmaceutical Inc., 900 Ridgebury Road, Ridgefield, CT 06877, United States.
Antibody generation requires the use of one or more time-consuming methods, namely animal immunization, and in vitro display technologies. However, the recent availability of large amounts of antibody sequence and structural data in the public domain along with the advent of generative deep learning algorithms raises the possibility of computationally generating novel antibody sequences with desirable developability attributes. Here, we describe a deep learning model for computationally generating libraries of highly human antibody variable regions whose intrinsic physicochemical properties resemble those of the variable regions of the marketed antibody-based biotherapeutics (medicine-likeness).
View Article and Find Full Text PDFAccurate survival prediction of patients with long-bone metastases is challenging, but important for optimizing treatment. The Skeletal Oncology Research Group (SORG) machine learning algorithm (MLA) has been previously developed and internally validated to predict 90-day and 1-year survival. External validation showed promise in the United States and Taiwan.
View Article and Find Full Text PDFJ Pharm Anal
November 2024
College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China.
SSM Popul Health
March 2025
Dalla Lana School of Public Health, University of Toronto, Health Sciences Building, 155 College Street, 6th Floor, Toronto, Ontario, M5T 3M7, Canada.
Background: Multimorbidity, the co-occurrence of two or more chronic conditions, is associated with the social determinants of health. Using comprehensive linked population-representative data, we sought to understand the combined effect of multiple social determinants on multimorbidity incidence in Ontario, Canada.
Methods: Ontario respondents aged 20-55 in 2001-2011 cycles of the Canadian Community Health Survey were linked to administrative health data ascertain multimorbidity status until 2022.
World J Gastrointest Endosc
January 2025
Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.
Background: Recent advancements in artificial intelligence (AI) have significantly enhanced the capabilities of endoscopic-assisted diagnosis for gastrointestinal diseases. AI has shown great promise in clinical practice, particularly for diagnostic support, offering real-time insights into complex conditions such as esophageal squamous cell carcinoma.
Case Summary: In this study, we introduce a multimodal AI system that successfully identified and delineated a small and flat carcinoma during esophagogastroduodenoscopy, highlighting its potential for early detection of malignancies.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!