Background: Recently, deep learning techniques have been widely used in low-dose computed tomography (LDCT) imaging applications for quickly generating high quality computed tomography (CT) images at lower radiation dose levels. The purpose of this study is to validate the reproducibility of the denoising performance of a given network that has been trained in advance across varied LDCT image datasets that are acquired from different imaging systems with different spatial resolutions.

Methods: Specifically, LDCT images with comparable noise levels but having different spatial resolutions were prepared to train the U-Net. The number of CT images used for the network training, validation and test was 2,400, 300 and 300, respectively. Afterwards, self- and cross-validations among six selected spatial resolutions (62.5, 125, 250, 375, 500, 625 µm) were studied and compared side by side. The residual variance, peak signal to noise ratio (PSNR), normalized root mean square error (NRMSE) and structural similarity (SSIM) were measured and compared. In addition, network retraining on a small number of image set was performed to fine tune the performance of transfer learning among LDCT tasks with varied spatial resolutions.

Results: Results demonstrated that the U-Net trained upon LDCT images having a certain spatial resolution can effectively reduce the noise of the other LDCT images having different spatial resolutions. Regardless, results showed that image artifacts would be generated during the above cross validations. For instance, noticeable residual artifacts were presented at the margin and central areas of the object as the resolution inconsistency increased. The retraining results showed that the artifacts caused by the resolution mismatch can be greatly reduced by utilizing about only 20% of the original training data size. This quantitative improvement led to a reduction in the NRMSE from 0.1898 to 0.1263 and an increase in the SSIM from 0.7558 to 0.8036.

Conclusions: In conclusion, artifacts would be generated when transferring the U-Net to a LDCT denoising task with different spatial resolution. To maintain the denoising performance, it is recommended to retrain the U-Net with a small amount of datasets having the same target spatial resolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10784075PMC
http://dx.doi.org/10.21037/qims-23-768DOI Listing

Publication Analysis

Top Keywords

spatial resolutions
16
ldct images
12
spatial resolution
12
spatial
9
transferring u-net
8
varied spatial
8
computed tomography
8
denoising performance
8
images spatial
8
artifacts generated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!