The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) nucleases system (CRISPR/Cas9) is a popular gene-editing technology with an expanding scope in the field of medicine. Recent studies have investigated the role of CRISPR/Cas9 system in the treatment of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). Since the risk of occurrence of both conditions is strongly associated with genetic mutations and variations, the use of gene-editing technologies to rectify these genetic errors becomes relevant. The CRISPR/Cas9 system has been tested in AD, which has led to a decrease in either amyloid beta deposition or tau phosphorylation in cells. Likewise, genetic mutations in cells affected by PD have been corrected with promising results in initial studies undertaken. Therefore, the use of the CRISPR/Cas9 system should be expanded among different populations to understand its efficacy and safety in depth among neurodegenerative conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10783353 | PMC |
http://dx.doi.org/10.1097/MS9.0000000000001500 | DOI Listing |
J Vis Exp
January 2025
Department of Microbiology and Immunology, Medical University of South Carolina; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina; Hollings Cancer Center, Medical University of South Carolina;
Chimeric antigen receptor (CAR) T-cell therapy has reshaped the face of cancer treatment, leading to record remission rates in previously incurable hematological cancers. These successes have spurred interest in adapting the CAR platform to a small yet pivotal subset of CD4 T cells primarily responsible for regulating and inhibiting the immune response, regulatory T cells (Tregs). The ability to redirect Tregs' immunosuppressive activity to any extracellular target has enormous implications for creating cell therapies for autoimmune disease, organ transplant rejection, and graft-versus-host disease.
View Article and Find Full Text PDFBackground: Megalencephalic leukoencephalopathy with subcortical cysts (MLC), a rare and progressive neurodegenerative disorder involving the white matter, is not adequately recapitulated by current disease models. Somatic cell reprogramming, along with advancements in genome engineering, may allow the establishment of human models of MLC for disease modeling and drug screening. In this study, we utilized cellular reprogramming and gene-editing techniques to develop induced pluripotent stem cell (iPSC) models of MLC to recapitulate the cellular context of the classical MLC-impacted nervous system.
View Article and Find Full Text PDFUnlabelled: Bacterial genomic mutations in have been detected in isolated resistant clinical strains, yet their mechanistic effect on the development of antimicrobial resistance remains unclear. The resistance-associated regulatory systems acquire adaptive mutations under stress conditions that may lead to a gain of function effect and contribute to the resistance phenotype. Here, we investigate the effect of a single-point mutation (T331I) in VraS histidine kinase, part of the VraSR two-component system in VraSR senses and responds to environmental stress signals by upregulating gene expression for cell wall synthesis.
View Article and Find Full Text PDFUnlabelled: is an emergent fungal pathogen of significant interest for molecular research because of its unique nosocomial persistence, high stress tolerance and common multidrug resistance. To investigate the molecular mechanisms of these or other phenotypes, a handful of CRISPR-Cas9 based allele editing tools have been optimized for . Nonetheless, allele editing in this species remains a significant challenge, and different systems have different advantages and disadvantages.
View Article and Find Full Text PDFDrug Dev Res
February 2025
Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong, China.
Ovarian cancer is the seventh most common lethal tumor among women in the world. FOXM1 is a transcription factor implicated in the initiation and progression of ovarian cancer by regulating key oncogenic genes. The role of regulatory regions in regulating the expression of FOXM1 in ovarian cancer is not completely clarified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!