The induction of hypothyroidism by methimazole produces a delay in CNS development as well as behavioral deficits in rat pups. Methimazole (0.1 mg/ml) was administered via drinking water to dams from gestational day 17 to postnatal day 10. Rat pup body weight was reduced on postnatal day 15 (P15) and 30 (P30) while brain weight was decreased only at P15. Soluble brain protein was decreased at P15 and P30. Total enolase and neuron-specific plus hybrid enolase (NSE+H) specific activity and activity were reduced on P15, while non-neuronal enolase (NNE) activity but not specific activity was depressed. At postnatal day 30, total enolase and NSE+H activity were slightly reduced, but NNE activity and the specific activities of total enolase, NNE and NSE+H were similar to controls. The ratio of NSE+H to NNE was reduced at P15 but not P30. The alterations in enolase activity following methimazole administration suggest a delay in the development and maturation of the CNS at P15. These results provide a biochemical correlate of the developmental delays reported in hypothyroid rat pups.
Download full-text PDF |
Source |
---|
Free Radic Res
January 2025
Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.
Reactive oxygen species (ROS) produced by NADPH oxidase promote contraction of peripheral arteries, which is especially pronounced in early postnatal period in comparison to adulthood, but the mechanisms of such vasomotor influence are poorly understood. We tested the hypothesis that Rho-kinase and protein kinase C (PKC) mediate procontractile influence of NADPH oxidase derived ROS in peripheral artery of early postnatal rats. In addition, we evaluated the involvement Src-kinase and L-type voltage-gated Ca channels (LTCC) into procontractile influence of ROS, produced by NADPH oxidase, because of their known interplay with Rho-kinase and PKC pathways.
View Article and Find Full Text PDFArch Endocrinol Metab
January 2025
Universidade Federal de São Paulo São PauloSP Brasil Universidade Federal de São Paulo, São Paulo, SP, Brasil.
Objective: Nitrate is ubiquitously found in the environment and is one of the main components of nitrogen fertilizers. Previous studies have shown that nitrate disrupts the reproductive system in aquatic animals, but no study has evaluated the impact of nitrate exposure on the uterus in mammals. This study aimed to evaluate the impact of maternal exposure to nitrate during the prenatal period on uterine morphology and gene expression in adult female F1 rats.
View Article and Find Full Text PDFFront Med (Lausanne)
January 2025
Department of Ophthalmology, Emory University, Atlanta, GA, United States.
Objective: Myopia prevalence is increasing at alarming rates, yet the underlying mechanistic causes are not understood. Several studies have employed experimental animal models of myopia and transcriptome profiling to identify genes and pathways contributing to myopia. In this study, we determined the retinal transcriptome changes in response to form deprivation in mouse retinas.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110.
Classical tissue recombination experiments demonstrate that cell-fate determination along the anterior-posterior axis of the Müllerian duct occurs prior to postnatal day 7 in mice. However, little is known about how these cell types are maintained in adults. In this study, we provide genetic evidence that a balance between antagonistic retinoic acid (RA) and estrogen signaling activity is required to maintain simple columnar cell fate in adult uterine epithelium.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Otolaryngology, Case Western Reserve University, Cleveland, OH, 44106, USA.
Usher syndrome type 1C (USH1C) is a genetic disorder caused by mutations in the USH1C gene, which encodes harmonin, a key component of the mechanoelectrical transduction complex in auditory and vestibular hair cells. USH1C leads to deafness and vestibular dysfunction in humans. An Ush1c knockout (KO) mouse model displaying these characteristic deficits is generated in our laboratory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!