Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The development of this work lies in the relevant interest in epoxy resins, which, despite their wide use, do not meet the requirements for sustainable materials. Therefore, the proposed approach considers the need to develop environmentally friendly systems, in terms of both the starting material and the synthetic method applied as well as in terms of end-of-life. The above issues were taken into account by (i) using a monomer from renewable sources, (ii) promoting the formation of dynamic covalent bonds, allowing for material reprocessing, and (iii) evaluating the degradability of the material. Indeed, an epoxy derived from cardanol was used, which, for the first time, was applied in the development of a vitrimer system. The exploitation of a diboronic ester dithiol ([2,2'-(1,4-phenylene)-bis[4-mercaptan-1,3,2-dioxaborolane], DBEDT) as a cross-linker allowed the cross-linking reaction to be carried out without the use of solvents and catalysts through a thiol-epoxy "click" mechanism. The dynamicity of the network was demonstrated by gel fraction experiments and rheological and DMA measurements. In particular, the formation of a vitrimer was highlighted, characterized by low relaxation times (around 4 s at 70 °C) and an activation energy of ca. 48 kJ/mol. Moreover, the developed material, which is easily biodegradable in seawater, was found to show promising flame reaction behavior. Preliminary experiments demonstrated that, unlike an epoxy resin prepared from the same monomer and using a classical cross-linker, our boron-containing material exhibited no dripping under combustion conditions, a phenomenon that will allow this novel biobased system to be widely used.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785085 | PMC |
http://dx.doi.org/10.1021/acsomega.3c07459 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!