The photodegradation of organic pollutants using metal oxide-based catalysts has drawn great attention as an effective method for wastewater treatment. In this study, zinc oxide nanoparticles (ZnO NPs) and zinc oxide/copper oxide nanocomposites (ZnO/CuO NCs) were fabricated using the leaf extract of as a nontoxic, natural reducing and stabilizing agent. The synthesized samples were characterized by employing X-ray diffraction, microscopic, spectroscopic, and electrochemical methods. The results confirmed the successful synthesis of ZnO NPs and ZnO/CuO NCs with well-defined crystalline structures and morphologies. The prepared samples were tested for the photodegradation of methylene blue (MB) dye under visible light irradiation. Compared to ZnO NPs, ZnO/CuO NCs showed greatly improved photocatalytic performances, particularly with the sample prepared with the 20 mol % Cu precursor (97.02%). The enhancement could be related to the formed p-n heterojunction, which can suppress the recombination of charge carriers and extend the photoresponsive range. A theoretical study of the photocatalytic activity of ZnO/CuO NCs against MB dye degradation was also conducted by using COMSOL Multiphysics software. The results of the simulation are in reasonable agreement with those of the experiment. This study contributes to the development of sustainable and effective photocatalytic materials that are suitable for application in environmental remediation, particularly in the treatment of wastewater.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785675PMC
http://dx.doi.org/10.1021/acsomega.3c06155DOI Listing

Publication Analysis

Top Keywords

zno/cuo ncs
16
zno nps
12
synthesis zno
8
photodegradation methylene
8
methylene blue
8
blue dye
8
nps zno/cuo
8
zno/cuo
5
leaf extract-mediated
4
extract-mediated green
4

Similar Publications

Chitosan hybrid nanomaterials: A study on interaction with biomimetic membranes.

Int J Biol Macromol

September 2024

Tumor Biology Research Program, Department of Research, Children's Cancer Hospital Egypt 57357, Cairo 11441, Egypt; Nanotechnology and Advanced Materials Central Lab, Agricultural Research Center, Giza 12619, Egypt; Regional Center for Food and Feed, Agricultural Research Center, Giza 12619, Egypt. Electronic address:

Article Synopsis
  • This study explores how nanomaterials, specifically chitosan (CS) and its composites, affect the organization and morphology of cell membrane lipids under different conditions.
  • Researchers investigated interactions between these nanomaterials and various lipid mixtures that simulate different membrane phases.
  • The results reveal that CS nanomaterials enhance lipid order and affect vesicle properties, leading to changes like vesicle adhesion, fusion, and shrinking, particularly in fluid membrane phases.
View Article and Find Full Text PDF

Exploring the mechanism underlying the antifungal activity of chitosan-based ZnO, CuO, and SiO nanocomposites as nanopesticides against Fusarium solani and Alternaria solani.

Int J Biol Macromol

May 2024

Nanotechnology and Advanced Materials Central Lab, Agricultural Research Center, Giza 12619, Egypt; Regional Center for Food and Feed, Agricultural Research Center, Giza 12619, Egypt; Tumor Biology Research Program, Department of Research, Children's Cancer Hospital, Cairo 11441, Egypt. Electronic address:

Chitosan-based nanocomposites (CS NCs) are gaining considerable attention as multifaceted antifungal agents. This study investigated the antifungal activity of NCs against two phytopathogenic strains: Fusarium solani (F. solani) and Alternaria solani (A.

View Article and Find Full Text PDF

The photodegradation of organic pollutants using metal oxide-based catalysts has drawn great attention as an effective method for wastewater treatment. In this study, zinc oxide nanoparticles (ZnO NPs) and zinc oxide/copper oxide nanocomposites (ZnO/CuO NCs) were fabricated using the leaf extract of as a nontoxic, natural reducing and stabilizing agent. The synthesized samples were characterized by employing X-ray diffraction, microscopic, spectroscopic, and electrochemical methods.

View Article and Find Full Text PDF

In this study, a simple, low-cost, and environmentally friendly method for the green synthesis of ZnO/CuO nanocomposites (NCs) using parsley extract was developed. The phytochemical components in the parsley leaf extract reacted with precursor salts in solution and yielded ZnO/CuO NCs. The synthesis of the green-synthesized NCs was confirmed via various characterization techniques, including UV-vis spectroscopy, X-ray diffraction (XRD) analysis, energy-dispersive X-ray (EDX), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FE-SEM).

View Article and Find Full Text PDF

Compared to conventional metal oxide nanoparticles, metal oxide nanocomposites have demonstrated significantly enhanced efficiency in various applications. In this study, we aimed to synthesize zinc oxide-copper oxide nanocomposites (ZnO-CuO NCs) using a green synthesis approach. The synthesis involved mixing 4 g of Zn(NO)·6HO with different concentrations of mangosteen () leaf extract (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!