Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Post-acute sequelae of SARS-CoV-2 (PASC) is an increasingly recognized yet incompletely understood public health concern. Several studies have examined various ways to phenotype PASC to better characterize this heterogeneous condition. However, many gaps in PASC phenotyping research exist, including a lack of the following: 1) standardized definitions for PASC based on symptomatology; 2) generalizable and reproducible phenotyping heuristics and meta-heuristics; and 3) phenotypes based on both COVID-19 severity and symptom duration. In this study, we defined computable phenotypes (or heuristics) and meta-heuristics for PASC phenotypes based on COVID-19 severity and symptom duration. We also developed a symptom profile for PASC based on a common data standard. We identified four phenotypes based on COVID-19 severity (mild vs. moderate/severe) and duration of PASC symptoms (subacute vs. chronic). The symptoms groups with the highest frequency among phenotypes were cardiovascular and neuropsychiatric with each phenotype characterized by a different set of symptoms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785914 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!