The introduction of deep learning caused a significant breakthrough in digital pathology. Thanks to its capability of mining hidden data patterns in digitised histological slides to resolve diagnostic tasks and extract prognostic and predictive information. However, the high performance achieved in classification tasks depends on the availability of large datasets, whose collection and preprocessing are still time-consuming processes. Therefore, strategies to make these steps more efficient are worth investigation. This work introduces SlideTiler, an open-source software with a user-friendly graphical interface. SlideTiler can manage several image preprocessing phases through an intuitive workflow that does not require specific coding skills. The software was designed to provide direct access to virtual slides, allowing custom tiling of specific regions of interest drawn by the user, tile labelling, quality assessment, and direct export to dataset directories. To illustrate the functions and the scalability of SlideTiler, a deep learning-based classifier was implemented to classify 4 different tumour histotypes available in the TCGA repository. The results demonstrate the effectiveness of SlideTiler in facilitating data preprocessing and promoting accessibility to digitised pathology images for research purposes. Considering the increasing interest in deep learning applications of digital pathology, SlideTiler has a positive impact on this field. Moreover, SlideTiler has been conceived as a dynamic tool in constant evolution, and more updated and efficient versions will be released in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10787253PMC
http://dx.doi.org/10.1016/j.jpi.2023.100356DOI Listing

Publication Analysis

Top Keywords

deep learning
12
digital pathology
8
slidetiler
7
slidetiler dataset
4
dataset creator
4
creator software
4
software boosting
4
deep
4
boosting deep
4
learning histological
4

Similar Publications

Photoacoustic tomography (PAT) is a non-destructive, non-ionizing, and rapidly expanding hybrid biomedical imaging technique, yet it faces challenges in obtaining clear images due to limited data from detectors or angles. As a result, the methodology suffers from significant streak artifacts and low-quality images. The integration of deep learning (DL), specifically convolutional neural networks (CNNs), has recently demonstrated powerful performance in various fields of PAT.

View Article and Find Full Text PDF

Multiple respiratory viruses can concurrently or sequentially infect the respiratory tract, making their identification crucial for diagnosis, treatment, and disease management. We present a label-free diagnostic platform integrating surface-enhanced Raman scattering (SERS) with deep learning for rapid, quantitative detection of respiratory virus coinfections. Using sensitive silica-coated silver nanorod array substrates, over 1.

View Article and Find Full Text PDF

Identification of potential drug-target interactions (DTIs) is a crucial step in drug discovery and repurposing. Although deep learning effectively deciphers DTIs, most deep learning-based methods represent drug features from only a single perspective. Moreover, the fusion method of drug and protein features needs further refinement.

View Article and Find Full Text PDF

Intraindividual Comparison of Image Quality Between Low-Dose and Ultra-Low-Dose Abdominal CT With Deep Learning Reconstruction and Standard-Dose Abdominal CT Using Dual-Split Scan.

Invest Radiol

January 2025

From the Department of Radiology, Ulsan University Hospital, Ulsan, Republic of Korea (T.Y.L.); Department of Radiology, University of Ulsan College of Medicine, Seoul, Republic of Korea (T.Y.L.); Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea (J.H.Y., H.K., J.M.L.); Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea (J.H.Y., S.H.P., J.M.L.); Department of Radiology, Inje University Busan Paik Hospital, Busan, Republic of Korea (J.Y.P.); Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea (S.H.P.); Department of Radiology, Hanyang University College of Medicine, Seoul, Republic of Korea (C.L.); Division of Biostatistics, Medical Research Collaborating Center, Seoul National University Hospital, Seoul, Republic of Korea (Y.C.); and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (J.M.L.).

Objective: The aim of this study was to intraindividually compare the conspicuity of focal liver lesions (FLLs) between low- and ultra-low-dose computed tomography (CT) with deep learning reconstruction (DLR) and standard-dose CT with model-based iterative reconstruction (MBIR) from a single CT using dual-split scan in patients with suspected liver metastasis via a noninferiority design.

Materials And Methods: This prospective study enrolled participants who met the eligibility criteria at 2 tertiary hospitals in South Korea from June 2022 to January 2023. The criteria included (a) being aged between 20 and 85 years and (b) having suspected or known liver metastases.

View Article and Find Full Text PDF

Diabetic retinopathy, a retinal disorder resulting from diabetes mellitus, is a prominent cause of visual degradation and loss among the global population. Therefore, the identification and classification of diabetic retinopathy are of utmost importance in the clinical diagnosis and therapy. Currently, these duties are extensively carried out by manual examination utilizing the human visual system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!