Highly Strong, Tough, and Cryogenically Adaptive Hydrogel Ionic Conductors via Coordination Interactions.

Research (Wash D C)

College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.

Published: January 2024

Despite the promise of high flexibility and conformability of hydrogel ionic conductors, existing polymeric conductive hydrogels have long suffered from compromises in mechanical, electrical, and cryoadaptive properties due to monotonous functional improvement strategies, leading to lingering challenges. Here, we propose an all-in-one strategy for the preparation of poly(acrylic acid)/cellulose (PAA/Cel) hydrogel ionic conductors in a facile yet effective manner combining acrylic acid and salt-dissolved cellulose, in which abundant zinc ions simultaneously form strong coordination interactions with the two polymers, while free solute salts contribute to ionic conductivity and bind water molecules to prevent freezing. Therefore, the developed PAA/Cel hydrogel simultaneously achieved excellent mechanical, conductive, and cryogenically adaptive properties, with performances of 42.5 MPa for compressive strength, 1.6 MPa for tensile strength, 896.9% for stretchability, 9.2 MJ m for toughness, 59.5 kJ m for fracture energy, and 13.9 and 6.2 mS cm for ionic conductivity at 25 and -70 °C, respectively. Enabled by these features, the resultant hydrogel ionic conductor is further demonstrated to be assembled as a self-powered electronic skin (e-skin) with high signal-to-noise ratio for use in monitoring movement and physiological signals regardless of cold temperatures, with hinting that could go beyond high-performance hydrogel ionic conductors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10786319PMC
http://dx.doi.org/10.34133/research.0298DOI Listing

Publication Analysis

Top Keywords

hydrogel ionic
20
ionic conductors
16
cryogenically adaptive
8
coordination interactions
8
paa/cel hydrogel
8
ionic conductivity
8
ionic
7
hydrogel
6
highly strong
4
strong tough
4

Similar Publications

Phytic Acid-Induced Gradient Hydrogels for Highly Sensitive and Broad Range Pressure Sensing.

Adv Mater

January 2025

Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.

Ionic conductive hydrogels have emerged as an excellent option for constructing dielectric layers of interfacial iontronic sensors. Among these, gradient ionic hydrogels, due to the intrinsic gradient elastic modulus, can achieve a wide range of pressure responses. However, the fabrication of gradient hydrogels with optimal mechanical and sensing properties remains a challenge.

View Article and Find Full Text PDF

The cartilage possesses limited regenerative capacity, necessitating advanced approaches for its repair. This study introduces a bioink designed for cartilage tissue engineering (TE) by incorporating ionically cross-linkable alginate into the photo-cross-linkable MuMA bioink, resulting in a double cross-linked interpenetrating network (IPN) hydrogel. Additionally, hyaluronic acid (HA), a natural component of cartilage and synovial fluid, was added to enhance the scaffold's properties.

View Article and Find Full Text PDF

Achieving ultrahigh permeance and superoleophobicity is crucial for membrane application. Here, we demonstrated that a poly(ionic liquid)/PES hydrogel membrane can achieve dual goals. The high polarity of the ionic liquids induces the water molecules on the membrane surface to be arranged more ordered, as verified by molecular dynamics (MD) simulation and advanced femtosecond sum frequency generation (SFG) vibrational spectroscopy.

View Article and Find Full Text PDF

Recent Advances in Self-Powered Sensors Based on Ionic Hydrogels.

Research (Wash D C)

January 2025

School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China.

After years of research and development, flexible sensors are gradually evolving from the traditional "electronic" paradigm to the "ionic" dimension. Smart flexible sensors derived from the concept of ion transport are gradually emerging in the flexible electronics. In particular, ionic hydrogels have increasingly become the focus of research on flexible sensors as a result of their tunable conductivity, flexibility, biocompatibility, and self-healable capabilities.

View Article and Find Full Text PDF

Direct pacing of the mid myocardium where re-entry originates can be used to prevent ventricular arrhythmias and circumvent the need for painful defibrillation or cardiac ablation. However, there are no pacing electrodes small enough to navigate the coronary veins that cross these culprit scar regions. To address this need, we have developed an injectable ionically conductive hydrogel electrode that can fill the epicardial coronary veins and transform them into flexible electrodes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!