Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Infectious disease events can cause disruptions in service-based and agricultural industries. The list of possible events is long and varies from the incursion or emergence of a reportable animal pathogen to the recently documented interruptions caused by the COVID-19 pandemic. There is a need to develop models that can determine the impact of pathogens and mitigation measures on populations that are not directly affected by the pathogen in the case of a reportable disease, particularly when the health and welfare of these populations could be affected due to resulting disruptions in trade and supply chains. The primary objective of this study was to develop a discrete-event simulation (DES) model of swine production, including pork processing, for scenarios without major disruptions, which could be scaled from the level of an individual farm to the entire province of Ontario, Canada. The secondary objective was to validate the developed simulation against observed farm- and province-level statistics. A weekly discrete-event simulation consisting of 3 connected areas (a sow farm, a pig farm, and abattoirs) was developed using AnyLogic modelling software. Using Mann-Whitney tests, model outputs representative of the standard industry statistics were compared to data from 6 individual farms separately, as well as to provincial data from Ontario. A scalable discrete-event simulation of the swine production system for typical scenarios was accomplished. The model outputs were consistent with individual farm and industry statistics. As such, the model can be used to simulate swine production at distinct levels and could be further modified to represent swine marketing in other provinces or internationally.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10782463 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!