LncRNA HCP5 is Highly Expressed in Gestational Diabetes Mellitus to Suppress Insulin Secretion.

Diabetes Metab Syndr Obes

Department of Gynecology and Obstetrics, Sichuan University West China Second University Hospital, Chengdu, Sichuan, People's Republic of China.

Published: January 2024

Purpose: LncRNA HCP5 has been reported to participate in high glucose-induced pathological processes, whereas its role in gestational diabetes mellitus (GDM) is unclear. This study aimed to explore the role of HCP5 in GDM.

Methods: This study enrolled a total of 220 pregnant women (gestational age = 1 month). A follow-up study was performed until delivery. The occurrence of GDM was checked every month during follow-up. Plasma samples were collected from all participants and expression of HCP5 was determined with RT-qPCR. The 220 patients were divided into high and low GDM groups, and GDM-free curves were plotted for both groups and compared. The ROC curve was plotted to explore the predictive value of plasma HCP5 on the day of admission for GDM. INS-1 cells were transfected with HCP5 expression vector or siRNA, and cell viability under high glucose was determined by the MTT assay. An ELISA was applied to determine insulin levels in the cell culture medium.

Results: During follow-up, the level of HCP5 was increased during pregnancy and the high HCP5 level group showed a significantly higher incidence of GDM. Plasma levels of HCP5 on the day of admission effectively separated GDM patients from healthy controls. HCP5 negatively regulated cell viability and insulin secretion under high glucose treatment.

Conclusion: HCP5 may act as a predictor for GDM, and it negatively regulated INS-1 cell viability and insulin secretion under high glucose conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10787547PMC
http://dx.doi.org/10.2147/DMSO.S409365DOI Listing

Publication Analysis

Top Keywords

insulin secretion
12
cell viability
12
high glucose
12
hcp5
10
lncrna hcp5
8
gestational diabetes
8
diabetes mellitus
8
month follow-up
8
hcp5 day
8
day admission
8

Similar Publications

Quercetin (QE), a particular flavonoid, is well known for its medicinal effects, including anti-oxidant, hypoglycemic, and anti-inflammatory effects. In this review, the findings of QE effects on diabetes STZinduced, alloxan-induced, and its complications have been summarized with a particular focus on in vitro, in vivo, and clinical trials. Consequently, QE mediates several mechanisms, including ameliorating tumor necrosis factor (TNF)-α, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukin (IL)-1β, IL-8, and IL-10 expression, increasing insulin glucose uptake to inhibit insulin resistance.

View Article and Find Full Text PDF

Growth hormone (GH) secretion by the pituitary is regulated by stimulatory and inhibitory pathways such as growth hormone releasing hormone (GHRH) and somatostatin, respectively, being also modulated by different neurotransmitters acting at the hypothalamic/pituitary level. The pineal gland hormone melatonin regulates GH secretion in many mammals, including humans, although its role in modulating GH secretion has been debated. We describe the case of a young woman chronically taking melatonin for sleep disturbances, referring to her general practitioner for flushing that appeared just after starting melatonin intake.

View Article and Find Full Text PDF

Sacubitril/valsartan, an angiotensin receptor neprilysin inhibitor (ARNI), is becoming more common in the treatment of heart failure and hypertension. Neprilysin is highly expressed in the renal tubules, and reports have shown increases in urinary C-peptide reactivity (CPR) levels after administration of ARNI. However, the effect of ARNI on serum CPR levels, a critical marker of insulin secretion in diabetes, remains underexplored.

View Article and Find Full Text PDF

Introduction: Type 1 diabetes is often accompanied by autoimmune thyroid disease. We aimed to investigate the clinical characteristics of Japanese patients with acute-onset type 1 diabetes and thyroid autoantibodies, focusing on decreased endogenous insulin secretion.

Materials And Methods: We examined 80 patients with acute-onset type 1 diabetes, classifying them into two groups with and without thyroid autoantibodies and compared the clinical characteristics of the two groups.

View Article and Find Full Text PDF

Unraveling the pathophysiology of type 2 diabetes with a new selectively bred animal model, the Oikawa-Nagao mouse.

Diabetol Int

January 2025

Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo, 113-8603 Japan.

Type 2 diabetes (T2D) is a polygenic disease, and the development of animal models by selective breeding is crucial for understanding its etiology, pathophysiology, complications, and treatments. We recently developed a new T2D model, the Oikawa-Nagao (ON) mouse, by selectively breeding mice with inferior glucose tolerance [diabetes-prone (ON mouse DP®; ON-DP) strain] and superior glucose tolerance [diabetes-resistant (ON mouse DR®; ON-DR) strain] on a high-fat diet. ON-DP mice are predisposed to develop diabetes and obesity after being fed a high-fat diet, compared to ON-DR mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!