Background: Rapid regeneration of the residual liver is one of the key determinants of successful partial hepatectomy (PHx). At present, there is a lack of recognized safe, effective, and stable drugs to promote liver regeneration. It has been reported that vagus nerve signaling is beneficial to liver regeneration, but the potential mechanism at play here is not fully understood.
Aim: To explore the effect and mechanism of hepatic vagus nerve in liver regeneration after PHx.
Methods: A PHx plus hepatic vagotomy (Hv) mouse model was established. The effect of Hv on liver regeneration after PHx was determined by comparing the liver regeneration levels of the PHx-Hv group and the PHx-sham group mice. In order to further investigate the role of interleukin (IL)-22 in liver regeneration inhibition mediated by Hv, the levels of IL-22 in the PHx-Hv group and the PHx-sham group was measured. The degree of liver injury in the PHx-Hv group and the PHx-sham group mice was detected to determine the role of the hepatic vagus nerve in liver injury after PHx.
Results: Compared to control-group mice, Hv mice showed severe liver injury and weakened liver regeneration after PHx. Further research found that Hv downregulates the production of IL-22 induced by PHx and blocks activation of the signal transducer and activator of transcription 3 (STAT3) pathway then reduces the expression of various mitogenic and anti-apoptotic proteins after PHx. Exogenous IL-22 reverses the inhibition of liver regeneration induced by Hv and alleviates liver injury, while treatment with IL-22 binding protein (an inhibitor of IL-22 signaling) reduce the concentration of IL-22 induced by PHx, inhibits the activation of the STAT3 signaling pathway in the liver after PHx, thereby hindering liver regeneration and aggravating liver injury in PHx-sham mice.
Conclusion: Hv attenuates liver regeneration after hepatectomy, and the mechanism may be related to the fact that Hv downregulates the production of IL-22, then blocks activation of the STAT3 pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10784834 | PMC |
http://dx.doi.org/10.4240/wjgs.v15.i12.2866 | DOI Listing |
Pediatr Nephrol
January 2025
Department of Paediatric Nephrology, The Royal Children's Hospital, Melbourne, Australia.
Hepatopulmonary syndrome (HPS) is a life-threatening complication of chronic liver disease (CLD) that currently can be managed only by liver transplant. Though uncommon, some children with kidney disease have coexistent CLD and hence are at risk of developing HPS. Paediatric cases of HPS are rarely described in the nephrology literature.
View Article and Find Full Text PDFTranspl Int
January 2025
Division of Transplant Surgery, Department of Surgery, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States.
Liver xenotransplantation has emerged as a potential solution to the shortage of deceased human donor organs and is now becoming a reality due to recent developments in genetic engineering and immunosuppressive therapy. Early efforts using non-human primates and genetically modified pigs faced significant challenges such as thrombocytopenia and graft rejection. Understanding the mechanism behind those challenges and using novel genetically engineered pigs enabled researchers to overcome some of the hurdles, but more research is needed.
View Article and Find Full Text PDFJ Sport Health Sci
January 2025
Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China. Electronic address:
Background: Exercise induces molecular changes that involve multiple organs and tissues. Moreover, these changes are modulated by various exercise parameters-such as intensity, frequency, mode, and duration-as well as by clinical features like gender, age, and body mass index (BMI), each eliciting distinct biological effects. To assist exercise researchers in understanding these changes from a comprehensive perspective that includes multiple organs, diverse exercise regimens, and a range of clinical features, we developed Exercise Regulated Genes Database (ExerGeneDB), a database of exercise-regulated differential genes.
View Article and Find Full Text PDFActa Biomater
January 2025
Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, PR China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, PR China; International Center of Future Science, Jilin University, Changchun, Jilin, PR China; State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, PR China. Electronic address:
Tumor-associated macrophages (TAMs) significantly influence the clinical outcomes of immune checkpoint blockade (ICB) therapy. Strategies aimed at reprogramming TAMs from the immunosuppressive M2 phenotype to the pro-inflammatory M1 phenotype hold promise for enhancing ICB efficacy. Lipopolysaccharide (LPS), a potent Toll-like receptor 4 (TLR4) ligand, can reprogram TAMs toward an M1 phenotype.
View Article and Find Full Text PDFActa Biomater
January 2025
State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, P.R. China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China. Electronic address:
Non-compressible hemostasis and promoting tissue healing are important in soft tissue trauma repair. Inorganic aerogels show superior performance in rapid hemostasis or promoting tissue healing, but simultaneously promoting non-compressive hemostasis and soft tissue healing still remains a challenge. Herein, SiO-based inorganic nanofiber aerogels (M@SiO, M=Ca, Mg, and Sr) were prepared by freeze-drying the mixture of bioactive silicates-deposited SiO nanofibers and SiO sol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!