A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Activating Mn Sites by Ni Replacement in α-MnO. | LitMetric

Transition metal oxides are characterized by an acute structure and composition dependent electrocatalytic activity toward the oxygen evolution (OER) and oxygen reduction (ORR) reactions. For instance, Mn containing oxides are among the most active ORR catalysts, while Ni based compounds tend to show high activity toward the OER in alkaline solutions. In this study, we show that incorporation of Ni into α-MnO, by adding Ni precursor into the Mn-containing hydrothermal solution, can generate distinctive sites with different electronic configurations and contrasting electrocatalytic activity. The structure and composition of the Ni modified hollandite α-MnO phase were investigated by X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), transmission electron microscopy coupled to energy-dispersive X-ray spectroscopy (TEM-EDX), inductively coupled plasma-optical emission spectroscopy (ICP-OES), and X-ray photoelectron spectroscopy (XPS). Our analysis suggests that Mn replacement by Ni into the α-MnO lattice (site A) occurs up to approximately 5% of the total Mn content, while further increasing Ni content promotes the nucleation of separate Ni phases (site B). XAS and XRD show that the introduction of sites A and B have a negligible effect on the overall Mn oxidation state and bonding characteristics, while very subtle changes in the XPS spectra appear to suggest changes in the electronic configuration upon Ni incorporation into the α-MnO lattice. On the other hand, changes in the electronic structure promoted by site A have a significant impact in the pseudocapacitive responses obtained by cyclic voltammetry in KOH solution at pH 13, revealing the appearance of Mn 3d orbitals at the energy (potential) range relevant to the ORR. The evolution of Mn 3d upon Ni replacement significantly increases the catalytic activity of α-MnO toward the ORR. Interestingly, the formation of segregated Ni phases (site B) leads to a decrease in the ORR activity while increasing the OER rate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10786130PMC
http://dx.doi.org/10.1021/acsmaterialsau.3c00051DOI Listing

Publication Analysis

Top Keywords

replacement α-mno
8
structure composition
8
electrocatalytic activity
8
incorporation α-mno
8
α-mno lattice
8
phases site
8
changes electronic
8
α-mno
6
activity
5
orr
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!