Cancer-targeted nanotechnology has a new trend in the design and preparation of new materials with functions for imaging and therapeutic applications simultaneously. As a new type of carbon nanomaterial, the inherent core-shell structured carbon dots (CDs) can be designed to provide a modular nanoplatform for integration of bioimaging and therapeutic capabilities. Here, core-shell structured CDs are designed and synthesized from levofloxacin and arginine and named Arg-CDs, in which levofloxacin-derived chromophores with up-conversion fluorescence are densely packed into the carbon core while guanidine groups are located on the shell, providing nitric oxide (NO) for photodynamic therapy of tumors. Moreover, the chromophores in the carbon core irradiated by visible LED light generate large amounts of reactive oxygen species (ROSs) that will oxidize the guanidine groups located on the shell of the Arg-CDs and further increase the NO releasing capacity remarkably. The as-synthesized Arg-CDs show excellent biocompatibility, bright up-conversion fluorescence, and a light-controlled ROS & NO releasing ability, which can be a potential light-modulated nanoplatform to integrate bioimaging and therapeutic functionalities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3an02034g | DOI Listing |
Adv Mater
January 2025
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China.
Biomimetic calcification is a micro-crystallization process that mimics the natural biomineralization process, where biomacromolecules regulate the formation of inorganic minerals. In this study, it is presented that a protein-assisted biomimetic calcification method for the in situ synthesis of nitrogen-doped metal-organic framework (MOF) materials. A series of unique core-shell structures are created by utilizing proteins as templates and guiding agents in the nucleation step, creating ideal conditions for shell growth.
View Article and Find Full Text PDFSmall
January 2025
School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
Covalent organic frameworks (COFs), known for their exceptional in situ encapsulation and precise release capabilities, are emerging as pioneering drug delivery systems. This study introduces a hypoxia-responsive COF designed to encapsulate the chemotherapy drug gambogic acid (GA) in situ. Bimetallic gold-palladium islands were grown on UiO-66-NH (UiO) to form UiO@Au-Pd (UAPi), which were encapsulated with GA through COF membrane formation, resulting in a core-shell structure (UAPiGC).
View Article and Find Full Text PDFSmall
January 2025
Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.
Construction of core-shell structured electrocatalysts with a thin noble metal shell is an effective strategy for lowering the usage of the noble metal and improving electrocatalytic properties because of the structure-induced geometric and electronic effects. Here, the synthesis of a novel core-shell structured nanocatalyst consisting of a thin amorphous Pd shell and a crystalline PdCu core and its significantly improved electrocatalytic properties for both formic acid oxidation and oxygen reduction reactions are shown. The electrocatalyst exhibits 4.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan.
This study employed a hydrothermal method to coat CuS onto PbS quantum dots loaded with ZnO, resulting in a core-shell-structured (PbS/ZnO)@CuS hetero-structured photocatalyst. The sulfide coating enhanced the photocatalyst's absorption in the near-infrared to visible light range and effectively reduced electron-hole (h) pair recombination during photocatalytic processes. Electron microscopy analysis confirmed the successful synthesis of this core-shell structure using polyvinylpyrrolidone (PVP); however, the spatial hindrance effect of PVP led to a disordered arrangement of the CuS lattice, facilitating electron-hole recombination.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Key Laboratory of Biomass Energy and Material, Jiangsu Province, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China.
Rosmarinic acid (RA) is a natural active compound widely found in many plants belonging to the family of , , and so on, which has various important bioactivities, including being anti-oxidative, anti-inflammatory, antiviral, etc. Herein, novel hydrophilic magnetic molecularly imprinted polymers (HMMIPs) with a regular core-shell structure were successfully developed using RA as a template molecule, acrylamide (AM) as a functional monomer, N-N 'methylenebisacrylamide (MBA) as a cross-linking agent, and water as the porogen. After a series of characterization and adsorption performance analyses, it was found that HMMIPs are hydrophilic with an adsorption capacity of 8.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!