3.1
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=38221818&retmode=xml&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b49083.1
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=circularly+polarized&datetype=edat&usehistory=y&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b49083.1
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&WebEnv=MCID_67957a212c458e3d200e7b3b&query_key=1&retmode=xml&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908 Controllable Circularly Polarized Luminescence with High Dissymmetry Factor via Co-Assembly of Achiral Dyes in Liquid Crystal Polymer Films. | LitMetric

Controllable Circularly Polarized Luminescence with High Dissymmetry Factor via Co-Assembly of Achiral Dyes in Liquid Crystal Polymer Films.

Small Methods

School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai, 200240, China.

Published: September 2024

Circularly polarized luminescence (CPL) materials are highly demanded due to their great potential in optoelectronic and chiroptical elements. However, the preparation of CPL films with high luminescence dissymmetry factors (g) remains a formidable task, which impedes their practical application in film-based devices. Herein, a facile strategy to prepare solid CPL film with a high g through exogenous chiral induction and amplification of liquid crystal polymers is proposed. Amplification and reversion of the CPL appear when the films are annealed at the chiral nematic liquid crystalline temperature and the maximal g up to 0.30 due to the enhancement of selective reflection. Thermal annealing treatment at different liquid crystalline states facilitates the formation of the chiral liquid phase and adjusts the circularly polarized emission. This work not only provides a straightforward and versatile platform to construct organic films capable of exhibiting strong circularly polarized emission but also is helpful in understanding the exact mechanism for the liquid crystal enhancement of CPL performance.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smtd.202301517DOI Listing

Publication Analysis

Top Keywords

circularly polarized
16
liquid crystal
12
polarized luminescence
8
liquid crystalline
8
polarized emission
8
liquid
6
cpl
5
controllable circularly
4
polarized
4
luminescence high
4

Similar Publications

Developing a new type of circularly polarized luminescent active small organic molecule that combines high fluorescence quantum yield and luminescence dissymmetric factor in both solution and solid state is highly challenging but promising. In this context, we designed and synthesized a unique triarylborane-based [2.2]paracyclophane derivative, , in which an electron-accepting [(2-dimesitylboryl)phenyl]ethynyl group and an electron-donating -diphenylamino group are introduced into two different benzene rings of [2.

View Article and Find Full Text PDF

A Compact Broadband Common-Aperture Dual-Polarized Antenna for Drone Applications.

Micromachines (Basel)

December 2024

College of Electronic and Electrical Engineering, Henan Normal University, Xinxiang 453600, China.

A novel common-aperture miniaturized antenna with wideband and dual-polarized characteristics is proposed, which consists of a circularly polarized (CP) and a linearly polarized (LP) antenna. The circularly polarized antenna stacked on the upper layer adopts asymmetrical ground and introduces the patch and T-type feed network. On this basis, the meshed reflector structure, which also works as a ground plane for the LP antenna, is added to reduce the influence on circular polarization and achieve directional radiation.

View Article and Find Full Text PDF

Artificial microstructures, especially metamaterials, have garnered increasing attention in numerous applications due to their rich and distinctive properties. Starting from the principle of multi-beam interference, we have theoretically devised a beam configuration consisting of six symmetrically distributed coherent beams to generate two-dimensional microstructures with diverse shapes of unitcells under different polarization combinations. In particular, a split-ring metamaterial template is achieved with two adjacent circularly and four linearly polarized beams with such single-step holographic interferometry.

View Article and Find Full Text PDF

Photofunctional cyclophane host-guest systems.

Chem Commun (Camb)

January 2025

Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.

Modulation of optical properties through smart protein matrices is exemplified by a few examples in nature such as rhodopsin (absorption wavelength tuning) and the green fluorescence protein (emission), but in general, the scope found in nature for the matrix-controlled photofunctions remains rather limited. In this review, we present cyclophane-based supramolecular host-guest complexes for which electronic interactions between the cyclophane host and mostly planar aromatic guest molecules can actively modulate excited-state properties in a more advanced way involving both singlet and triplet excited states. We begin by highlighting photofunctional host-guest systems for on-off fluorescence switching and chiroptical functions using bay-functionalized perylene bisimide cyclophanes.

View Article and Find Full Text PDF

Magnetophononics and the chiral phonon misnomer.

PNAS Nexus

January 2025

The Harrison M. Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040, USA.

The direct, ultrafast excitation of polar phonons with electromagnetic radiation is a potent strategy for controlling the properties of a wide range of materials, particularly in the context of influencing their magnetic behavior. Here, we show that, contrary to common perception, the origin of phonon-induced magnetic activity does not stem from the Maxwellian fields resulting from the motion of the ions themselves or the effect their motion exerts on the electron subsystem. Through the mechanism of electron-phonon coupling, a coherent state of circularly polarized phonons generates substantial non-Maxwellian fields that disrupt time-reversal symmetry, effectively emulating the behavior of authentic magnetic fields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!