Leveraging Curvature on N-Doped Carbon Materials for Hydrogen Storage.

Small

Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA.

Published: June 2024

AI Article Synopsis

  • Carbon sorbent materials, particularly those modified with nitrogen (N) dopants, show potential for solid-state hydrogen storage at ambient temperatures.
  • Density functional theory (DFT) calculations were used to analyze how the curvature of undoped and N-doped carbon materials affects their stability and hydrogen binding activity.
  • Results indicate that while graphitic N-doping is favored at higher curvature sites, the overall hydrogen binding energy is more influenced by electronic effects from N-doping than by curvature itself.

Article Abstract

Carbon sorbent materials have shown great promise for solid-state hydrogen (H) storage. Modification of these materials with nitrogen (N) dopants has been undertaken to develop materials that can store H at ambient temperatures. In this work density functional theory (DFT) calculations are used to systematically probe the influence of curvature on the stability and activity of undoped and N-doped carbon materials toward H binding. Specifically, four models of carbon materials are used: graphene, [5,5] carbon nanotube, [5,5] D-C and C, to extract and correlate the thermodynamic properties of active sites with varying degrees of sp hybridization (curvature). From the calculations and analysis, it is found that graphitic N-doping is thermodynamically favored on more pyramidal sites with increased curvature. In contrast, it is found that the hydrogen binding energy is weakly affected by curvature and is dominated by electronic effects induced by N-doping. These findings highlight the importance of modulating the heteroatom doping configuration and the lattice topology when developing materials for H storage.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202310162DOI Listing

Publication Analysis

Top Keywords

carbon materials
12
n-doped carbon
8
hydrogen storage
8
materials
7
carbon
5
leveraging curvature
4
curvature n-doped
4
materials hydrogen
4
storage carbon
4
carbon sorbent
4

Similar Publications

Molecular Clip Strategy of Modified Sulfur Cathodes for High-Performance Potassium Sulfur Batteries.

Adv Sci (Weinh)

January 2025

Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, China.

Potassium-sulfur (K-S) batteries are severely limited by the sluggish reaction kinetics of the cyclooctasulfur (cyclo-S) electrode with low conductivity, which urgently requires a novel cathode to facilitate activity to improve sulfur utilization. In this study, using the wet chemistry method, the molecular clip of Li is created to replace cyclo-S molecular with the highly active chain-like S molecular. The molecular clip strategy effectively lowers the reaction barrier in potassium-sulfur systems, and the stretching of S─S bonds weakens the binding between sulfur atoms, facilitating the transformation of potassium polysulfides (KPSs).

View Article and Find Full Text PDF

Differential insulin response characteristics of graphene oxide-gold nanoparticle composites under varied synthesis conditions.

PLoS One

January 2025

Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, Department of Clinical Engineering and Material Supplies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China.

The structural alterations in the constituent materials of nanocomposites such as graphene nanocomposites typically induce changes in their properties including mechanical, electrical, and optical properties. Therefore, by altering the preparation conditions of nanocomposites and investigating their responsiveness to basic biomolecules (such as proteins), it is possible to explore the application potentials of the composites and guide development of new nanocomposite preparation. In this study, different composites of graphene oxide and gold nanoparticles (AuNPs/GO) were obtained by varying the volumes of reducing agents used in the one-pot hydrothermal method.

View Article and Find Full Text PDF

Defective MOFs have been identified as promising candidates for efficient membrane-based separation applications. However, the utilization of defective MOFs in membrane gas separation is still in its infancy due primarily to the inefficient molecular differentiation induced by structural defects. Herein, we report a strategic combination of ionic liquid (IL) and defective UiO-66-NH MOF to ameliorate the CO/N selectivity within the highly permeable PIM-1 polymer.

View Article and Find Full Text PDF

This paper describes the first use of conductive metal-organic frameworks as the active material in the electrochemical detection of nitric oxide in aqueous solution. Four hexahydroxytriphenylene (HHTP)-based MOFs linked with first-row transition metal nodes (M = Co, Ni, Cu, Zn) were compared as thin-film working electrodes for promoting oxidation of NO using voltammetric and amperometric techniques. Cu- and Ni-linked MOF analogs provided signal enhancement of 5- to 7-fold over a control glassy carbon electrode (SA = 6.

View Article and Find Full Text PDF

Novel Foamed Magnesium Phosphate Antimicrobial Bone Cement for Bone Augmentation.

J Biomed Mater Res B Appl Biomater

January 2025

Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China.

In dental implant surgery, infection is identified as the primary factor contributing to the failure of bone grafts. There is an urgent need to develop bone graft materials possessing antibacterial characteristics to facilitate bone regeneration. Magnesium phosphate bone cement (MPC) is highly desirable for bone regeneration due to its favorable biocompatibility, plasticity, and osteogenic capabilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!