Since Cd(II) and As(III) have extremely opposite chemical characteristics, it is a huge challenging to simultaneously remove these two ions from aqueous solutions. Therefore, a novel iron sulfide-based porous biochar (FSB) was synthesized and used to evaluate its Cd(II) and As(III) removal performance and mechanisms. The characterization and batch experiments results indicated that FeS was successfully loaded on the surface of biochar and increased its adsorption sites. The iron sulfide-based porous biochar was very favorable for the removal of Cd(II) and As(III) in the weakly acidic environment. The maximum adsorption of Cd(II) and As(III) by FSB was 108.8 mg g and 76.3 mg g, respectively, according to the Langmuir and Freundlich isothermal adsorption model, and the adsorption equilibrium time was 12 h and 4 h, respectively, according to the pseudo-second-order kinetic model. In the coexisting ion system, Cd(II) adsorption was suppressed by Ca, Mg, and humic acid, but enhanced by PO and As(III). As(III) adsorption was inhibited by PO and humic acid. Precipitation and complexation are the predominant adsorption mechanisms of Cd(II) and As(III), which contribute to the formation of Cd-O, Fe-O-Cd, As-O, Fe-O-As, ternary complex Cd-Fe-As, and stable compounds FeAsO·2HO and CdS. Therefore, The iron sulfide-based porous biochar can be an efficient and environmentally friendly candidate for the treatment of Cd(II) and As(III) co-polluted irrigation water.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-31932-yDOI Listing

Publication Analysis

Top Keywords

cdii asiii
28
iron sulfide-based
16
sulfide-based porous
16
porous biochar
16
asiii
9
removal performance
8
cdii
8
irrigation water
8
humic acid
8
adsorption
7

Similar Publications

Cadmium (Cd) and arsenic (As) often coexist in water and agricultural soils around mining areas, and it is difficult to remove them at the same time due to their opposite chemical behaviors. Therefore, this study employed a co-precipitation-pyrolysis method to synthesize silica-based magnetic biochar (SMB) materials for the remediation of water contaminated with both Cd and As. The optimization of preparation conditions involved introducing three different types of silicates (NaSiO, CaSiO,and SiO) into the biomass-magnetite mixture, followed by pyrolysis at various temperatures (300℃, 500℃, and 700℃), and the optimal preparation conditions were determined based on the composite batch experiments.

View Article and Find Full Text PDF

Green synthesized nanoscale zero-valent iron impregnated tea residue biochar efficiently captures metal(loid)s for sustainable water remediation.

J Environ Manage

December 2024

Korea Biochar Research Center, Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Korea.

Pristine or modified nanoscale zero-valent iron (nZVI) synthesized though conventional chemical reduction have been widely recommended for remediating metal(loid)-contaminated water. However, their eco-friendliness is often challenged with the concomitant bio-toxicity and secondary environmental risks. Alternatively, this study utilized waste tea leaves extract and remaining residue as the reducing agent and pyrolytic matrix to innovatively fabricate a green synthesized nZVI impregnated tea residue biochar (G-nZVI/TB).

View Article and Find Full Text PDF

Sorption of metal ions onto PET-derived microplastic fibres.

Environ Sci Process Impacts

December 2024

School of Chemistry and Chemical Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK.

Article Synopsis
  • This study explored how microplastic polyester fibers, specifically polyethylene terephthalate (PET), can absorb various metal ions found in sewage.
  • The research found that PET fibers could effectively retain metal ions like lead, cadmium, and mercury, with lead showing the highest absorption capacity.
  • The findings suggest that when these microplastics are present in sewage treatment, they can contribute to the transfer of hazardous metals into the environment, particularly when sewage sludge is used on agricultural land.
View Article and Find Full Text PDF

An iron-manganese sludge-derived amendment was proposed to remediate arsenic (As) and cadmium (Cd) co-contaminated soil, with a strong adsorptive capacity across pH 4 to 10. The Langmuir model defined maximum adsorption at 78.17 mg/g for As(III), 110.

View Article and Find Full Text PDF

Efficient reductive recovery of arsenic from acidic wastewater by a UV/dithionite process.

Water Res

November 2024

National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Article Synopsis
  • The study presents a new method using ultraviolet (UV) light and dithionite to convert harmful arsenic (As(III)) in acidic wastewater into safe elemental arsenic (As(0)), minimizing hazardous waste.
  • More than 99.9% of As(III) was successfully reduced to As(0) with a specific molar ratio of dithionite and optimal pH conditions, resulting in high purity suitable for commercial use.
  • The method's efficiency was demonstrated to be cost-effective at about $0.668 per cubic meter for treating real arsenic-laden wastewater, highlighting its practical value for environmental remediation.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!