Blind deconvolution can remove the effects of complex paths and extraneous disturbances, thus recovering simple features of the original fault source, and is used extensively in the field of fault diagnosis. However, it can only identify and extract the statistical mean of the fault impact features in a single domain and is unable to simultaneously highlight the local features of the signal in the time-frequency domain. Therefore, the extraction effect of weak fault signals is generally not ideal. In this paper, a new time-frequency slice extraction method is proposed. The method first computes a high temporal resolution spectrum of the signal by short-time Fourier transform to obtain multiple frequency slices with distinct temporal waveforms. Subsequently, the constructed harmonic spectral feature index is used to quantify and target the intensity of feature information in each frequency slice and enhance their fault characteristics using maximum correlation kurtosis deconvolution. Enhancing the local features of selected frequency slice clusters can reduce noise interference and obtain signal components with more obvious fault signatures. Finally, the validity of the method was confirmed by a simulated signal and fault diagnosis of the rolling bearing outer and inner rings was accomplished sequentially. Compared with other common deconvolution methods, the proposed method obtains more accurate and effective results in identifying fault messages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.isatra.2024.01.003 | DOI Listing |
The S-transform is a fundamental time-frequency (T-F) domain analysis method in ground penetrating radar (GPR) data processing and can be used for identifying targets, denoising, extracting thin layers, and high-resolution imaging. However, the S-transform spectrum experiences energy leakage near the instantaneous frequency. This phenomenon causes frequency components to erroneously spread over a wider range, impacting the accuracy and precision of GPR data processing.
View Article and Find Full Text PDFiScience
May 2024
Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Vaud, Switzerland.
Epilepsy affects millions globally with a significant portion exhibiting pharmacoresistance. Abnormal neuronal activity elevates brain lactate levels, which prompted the exploration of its receptor, the hydroxycarboxylic acid receptor 1 (HCAR1) known to downmodulate neuronal activity in physiological conditions. This study revealed that HCAR1-deficient mice (HCAR1-KO) exhibited lowered seizure thresholds, and increased severity and duration compared to wild-type mice.
View Article and Find Full Text PDFMath Biosci Eng
January 2024
Institute of Logistics Science and Engineering, Shanghai Maritime University, Shanghai 201306, China.
Intelligent diagnosis of bearing faults is fundamental to machinery automation and their intelligent operation. Deep learning-based analysis of bearing vibration data has emerged as one research mainstream for fault diagnosis. To enhance the quality of feature extraction from bearing vibration signals and the robustness of the model, we construct a fault diagnostic model based on convolutional neural network (CNN) and long short-term memory (LSTM) parallel network to extract their temporal and spatial features from two perspectives.
View Article and Find Full Text PDFISA Trans
March 2024
Beijing Engineering Research Center of Precision Measurement Technology and Instruments, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China.
Bioengineering (Basel)
November 2023
Smart Diagnostic and Online Monitoring, Leipzig University of Applied Sciences, Wachterstraße 13, 04107 Leipzig, Germany.
Magnetic resonance imaging (MRI) is a standard procedure in medical imaging, on a par with echography and tomodensitometry. In contrast to radiological procedures, no harmful radiation is produced. The constant development of magnetic resonance imaging (MRI) techniques has enabled the production of higher resolution images.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!