A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Molecular formula assignment of dissolved organic matter by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry using two non-targeted data processing approaches: A case study from recirculating aquaculture systems. | LitMetric

Background: The accumulation of dissolved organic matter (DOM) poses an issue in the management of the water quality from recirculating aquaculture systems (RAS), but its characterization is often not detailed enough to understand the DOM transformations in RAS. In this study, we investigated the application of two distinct non-targeted data processing approaches using ultra-performance liquid chromatography (UPLC) with quadrupole time-of-flight mass spectrometry (QTOF-MS) and two software with different algorithmic designs: PetroOrg and Progenesis QI to accurately characterize the molecular composition of DOM in RAS by UPLC-QTOF-MS.

Results: The UPLC-QTOF-MS resolution in combination with PetroOrg and Progenesis QI software successfully assigned 912 and 106 unique elemental compositions, respectively, including compounds containing carbon, hydrogen, and oxygen (CHO) and nitrogen-containing CHO compounds (CHON), in the DOM samples from RAS. The results of these two distinct data processing approaches were consistent with the list of DOM formulas from RAS identified by higher resolution mass spectrometry techniques confirming their reliability. PetroOrg approach revealed only compositional information in the DOM samples from RAS, while Progenesis QI in addition to identifying new elemental compositions, increased their chemical space by giving information about their polarity and their possible key structures. DOM samples from RAS were found to be rich in unsaturated CHO compounds, with tentatively key structures of terpenoids with medium polarity indicating natural origins in their composition. The analysis also revealed probable structures of sucrose fatty acid esters and polyethylene glycol, indicating anthropogenic sources.

Significance And Novelty: The combination of these two non-targeted data processing approaches significantly improves the characterization of the complex mixture of DOM from RAS by UPLC-QTOF-MS reporting for the first time accurate DOM results in terms of its composition, while proposing its key structures. The presented methods can also be used to analyze different DOM samples with other HRMS techniques and software.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2023.342128DOI Listing

Publication Analysis

Top Keywords

data processing
16
processing approaches
16
dom samples
16
mass spectrometry
12
non-targeted data
12
samples ras
12
key structures
12
dom
10
dissolved organic
8
organic matter
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!