Background: Patients with major depressive disorder (MDD) have abnormal functional interaction among large-scale brain networks, indicated by aberrant effective connectivity of the default mode network (DMN), salience network (SN), and dorsal attention network (DAN). However, it remains unclear whether antidepressants can normalize the altered effective connectivity in MDD.
Methods: In this study, we collected resting-state functional magnetic resonance imaging data from 46 unmedicated patients with MDD at baseline and after 12 weeks of escitalopram treatment. We also collected data from 58 healthy controls (HCs) at the same time point with the same interval. Using spectral dynamic causal modeling and parametric empirical Bayes, we examined group differences, time effect and their interaction on the casual interactions among the regions of interest in the three networks.
Results: Compared with HCs, patients with MDD showed increased positive (excitatory) connections within the DMN, decreased positive connections within the SN and DAN, decreased absolute value of negative (inhibitory) connectivity from the SN and DAN to the DMN, and decreased positive connections between the DAN and the SN. Furthermore, we found that six connections related to the DAN showed decreased group differences in effective connectivity between MDD and HCs during follow-up compared to the baseline.
Conclusions: Our findings suggest that escitalopram therapy can partly improve the disrupted effective connectivity among high-order brain functional networks in MDD. These findings deepened our understanding of the neural basis of antidepressants' effect on brain function in patients with MDD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jad.2024.01.115 | DOI Listing |
Background: Alzheimer's disease (AD) is the most prevalent cause of dementia accounting for an estimated 60% to 80% of cases. Despite advances in the research field, developing truly effective therapies for AD symptoms remains a major challenge. Sweet almond contain nutrients that have the potential of combating age-related brain dysfunction, by improving learning, memory and neurocognitive performance.
View Article and Find Full Text PDFBackground: Accumulating evidence highlights impairment of autophagy as a key pathological feature of neurodegenerative diseases including Alzheimer's disease (AD). Autophagy is a highly dynamic, lysosome-based degradation process that promotes the clearance of degenerative factors to maintain cellular functions, preserve metabolic integrity, and ensure survival. Impaired autophagic function leads to the abnormal accumulation of autophagic vesicles (i.
View Article and Find Full Text PDFBackground: Recent anti-amyloid mAb trial results demonstrate slowing of Alzheimer's disease progression, but to date do not fully halt or reverse this progression. Optimization of anti-amyloid therapy (timing and duration of intervention, modality, combinations, biomarker guidance) is limited by incomplete understanding of the disease, such as relationship between amyloid and tau pathways. Mechanistic Alzheimer's progression modeling investigated how amyloid and tau pathologies are connected in driving progression.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Background: Cognitive decline associated with Alzheimer's disease (AD) correlates with hyperphosphorylated tau (pTau) propagating between neurons along networks connected by synapses. It has been hypothesized this transcellular transmission occurs partially by extracellular vesicles (EVs). Both genetic and pharmacological inhibition of nSMase2 has been found to inhibit EV biogenesis and pTau propagation.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
Background: Aging associates with decreased functional connectivity between brain regions linked to musical rhythm perception. Producing rhythmic music may result in strengthened functional connectivity of these regions, but more evidence is needed to support intervention design. Currently, few studies directly contrast younger and older adults' rhythmic music performance to understand brain-behavior relationships.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!