Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The well-stirred model (WSM) incorporating the fraction of unbound drug (f) to account for the effect of plasma binding on intrinsic clearance has been widely used for predicting hepatic clearance under the assumption that drug protein binding reaches equilibrium instantaneously. Our theoretical analysis reveals that the effect of protein binding on intrinsic clearance is better accounted for with the dynamic free fraction (f), a measure of drug protein binding affinity, which leads to a putative dynamic well-stirred model (dWSM) without the instantaneous equilibrium assumption. Using recombinant CYP3A4 as the in vitro clearance system, we demonstrate that the binding effect of albumin on the intrinsic clearance of both highly bound midazolam and highly free verapamil is fully corrected by their corresponding f values, respectively. On the other hand, f only corrects the binding effect of albumin on the intrinsic clearance of verapamil, and yields severe over-correction of the intrinsic clearance of midazolam. The results suggest that the traditional WSM is suitable for highly free drugs like verapamil but not necessarily for highly bound drugs such as midazolam due to the violation of the instantaneous equilibrium assumption or under-estimating the true free drug concentration. In comparison, the dWSM incorporating f holds true as long as drug elimination follows steady-state kinetics, and hence, it is more broadly applicable to drugs with different protein binding characteristics. Here we demonstrate with 36 diverse drugs, that the dWSM significantly improves the accuracy of predicting human hepatic clearance and liver extraction ratio from in vitro microsomal clearance data, highlighting the importance of drug plasma protein binding kinetics in addressing the under-prediction of hepatic clearance by the WSM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.xphs.2023.12.020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!