Northern China has experienced a significant increase in vegetation cover over the past few decades. It lacks a comprehensive understanding of how greening impacts local hydrothermal conditions. To address this issue, in our study, the RegCM-CLM45 model was used to conduct a thorough assessment of the impacts of greening on temperature, vapor pressure deficit (VPD), precipitation, and soil moisture. The findings revealed that the local climatic effects of greening varied across different drought gradients based on the aridity index (AI). In drier regions with AI<0.3, the increased energy induced by greening tended to dissipate as sensible heat, exacerbating both warming and drought conditions. Conversely, in wetter regions with AI>0.3, a greater proportion of energy was lost through evapotranspiration, attenuating warming. Additionally, greening enhanced precipitation and soil moisture in drier regions and moderated their decline in wetter regions. Significantly, our research emphasized the effectiveness of grassland expansion and conservation as prime strategies for ecological restoration, particularly in drylands, where they could effectively alleviate soil drought. Given the diverse responses of different land cover transformations to local hydrothermal conditions in drylands, there is an urgent need to address potential adverse effects arising from inappropriate ecological restoration strategies and to develop an optimal restoration framework for the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.170006 | DOI Listing |
Nanomaterials (Basel)
December 2024
State Key Laboratory of Chemical Safety, College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
With the growing severity of air pollution, monitoring harmful gases that pose risks to both human health and the ecological environment has become a focal point of research. Titanium dioxide (TiO) demonstrates significant potential for application in SO gas detection. However, the performance of pure TiO is limited.
View Article and Find Full Text PDFAdv Mater
January 2025
Institute of Thin Film Physics and Applications, Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
Anisotropic carrier transport and deep-level defect of antimony selenosulfide (Sb(S,Se)) absorber are two vital auses restraining the photovoltaic performance of this emerging thin-film solar cell. Herein, chelate engineering is proposed to prepare high-quality Sb(S,Se) film based on hydrothermal deposition approach, which realizes desirable carrier transport and passivated defects by using tetrahedral PO ion in dibasic sodium phosphate (NaHPO, DSP). The PO Lewis structure, on one hand in the form of [(SbO)(PO)] chelate, can adsorb on the polar planes of cadmium sulfide (CdS) layer, promoting the heterogeneous nucleation, and on the other hand, the tetrahedral PO inhibits horizontal growth of (SbS(e)) ribbons due to size effects, thus achieving desirable [hk1] orientation.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology, Nakhon Nayok, 26120, Thailand.
The present study aimed to investigate the hydrogeochemical patterns and contamination of the radiogeology, especially radon activity, related to geothermal aquifer properties and to perform a risk assessment of annual effective doses covering all hydrothermal spring attractions in Southern Thailand. Radon is an established lung carcinogen; especially longer term exposure to radioactive radon through inhalation could be a cause of lung cancer risk. Altogether 22 hydrothermal spring samples were collected from the six hydrothermal provinces in Southern Thailand in early November of 2023.
View Article and Find Full Text PDFSci Rep
January 2025
Process and Energy Department, University of Technology of Delft, Leeghwaterstraat 39, 2628 CB, Delft, The Netherlands.
An urgent ecological issue is the threat posed by invasive species, which are becoming more widespread especially in Africa. These encroachments damage ecosystems, pose a threat to biodiversity, and outcompete local plants and animals. This article focuses on converting Acacia Mellifera from Namibia, commonly known as encroacher bush (EB) into high-quality drop-in intermediates for the chemical and transport industry via hydrothermal liquefaction (HTL).
View Article and Find Full Text PDFSmall
December 2024
State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Center for Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.
Intractable implant-associated infections (IAIs) are the primary cause of prosthetic implant failure, particularly in the context of diabetes mellitus. There is an urgent need to design and construct versatile engineered implants integrated with cascade amplification therapeutic modality to significantly improve the treatment of diabetic IAIs. To address this issue, a multi-functional MXene/AgPO@glucose oxidase bio-heterojunction enzyme (M/A@GOx bio-HJzyme) coating is developed, which is decorated with an inert sulfonated polyetheretherketone implant (SP-M/A@G) via hydrothermal treatment and layered deposition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!