Catalytic degradation of rhodamine B by titanium dioxide doped polydopamine photoresponsive composites.

Int J Biol Macromol

Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, 710021 Xi'an, China.

Published: February 2024

Titanium dioxide-based materials treat wastewater contaminated by organic pollutants. However, the wide band gap and the ease of agglomeration limit its photocatalytic activity. PDA/PEI@TiO@P-HSM composites were synthesized using PDA/PEI as an interfacial bonding modifier via polymerization reaction. Phase and chemical bonding analysis confirmed the modifiedTiO coated P-HSM, which can effectively reduce the band gap and control the agglomeration of titanium dioxide, i.e., suitable to degrade RhB. Under UV irradiation, PDA/PEI @TiO@P-HSM can remove RhB up to 90 % in 100 min. The photocatalytic degradation process conforms to the Langmuir-Hinshelwood quasi-primary equation. The composite exhibited excellent stability and recycling i.e., a high removal effect, with a removal rate of up to 60 % after seven cycles of reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.129405DOI Listing

Publication Analysis

Top Keywords

titanium dioxide
8
band gap
8
catalytic degradation
4
degradation rhodamine
4
rhodamine titanium
4
dioxide doped
4
doped polydopamine
4
polydopamine photoresponsive
4
photoresponsive composites
4
composites titanium
4

Similar Publications

Suture-associated surgical site infection (SSI) causes bacterial pathogens to colonize on the suture surface that are highly resistant to antibiotic treatment. Conventional suture materials used in surgical practice are causing complications such as infection and chronic inflammation. Surgical suture materials with antibacterial coatings are widely used in surgical practice.

View Article and Find Full Text PDF

A hybrid coating made of poly (methyl methacrylate) with SiO2-TiO2 particles (PMMA/SiO2-TiO2) has been developed for use as a coating on nanosatellites, evaluating its resistance to high vacuum by quantifying its weight loss. The coating was applied on an Al 7075 aluminum substrate used for the aerospace sector. PMMA/SiO2-TiO2 hybrid coatings were prepared using sol-gel reaction in situ assisted with sonochemistry.

View Article and Find Full Text PDF

The modified nanoparticles can significantly improve the insulation characteristics of transformer oil. Currently, there is a lack of research on the actual motion state of particles in nanofluid to further understand the micro-mechanism of nanoparticles improving the insulation characteristics of transformer oil. In this study, the nanofluid containing 0.

View Article and Find Full Text PDF

This study focuses on the simulation of a solar photocatalytic reactor with linear parabolic reflectors and continuous fluid flow. The simulation approach was initially validated against experimental data reported by Miranda-Garcia et al. Catal Today 151:107-113 (2010), yielding a high degree of accuracy of approximately 0.

View Article and Find Full Text PDF

Background: The metal oxide nanoparticles possess unique properties such as biological compatibility, superior reactivity, and capacity to develop reactive oxygen species, due to this they have drawn significant interest in cancer treatment. The various MONPs such as cerium oxide, Copper oxide, Iron oxide, Titanium dioxide, and Zinc oxide have been investigated for several types of cancers including brain, breast, cervical, colon, leukemia, liver, lung, melanoma, ovarian, and prostate cancers. However, traditional physiochemical synthetic methods for MONPs commonly include toxic materials, a major concern that raises questions regarding their biocompatibility and safety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!