Interests in using high-amylose maize (HAM) flour and starch for low glycemic index foods continue to grow. The objective of this work was to understand resistant-starch formation during drying the HAM kernels. Freshly harvested HAM kernels with 28.2 % initial moisture were subjected to sun drying (~30 °C) or hot-air drying at 50 °C, 70 °C, 90 °C, or 110 °C. The enzymatic digestibility of HAM flour decreased from 63.6 % to 41.1 % as the drying temperature increased from 30 °C to 110 °C. The swelling power, solubility, and overall viscosity of HAM flours milled from kernels dried at 110 °C decreased, whereas the peak and conclusion gelatinization temperatures, enthalpy change, and relative crystallinity increased compared to those of flours from kernels dried at 30 °C, 50 °C, 70 °C, and 90 °C. Light microscopic and scanning electron microscopic images showed that starch granule aggregation in HAM flour increased with increasing drying-temperatures. The aggregates remained after 16 h enzymatic hydrolysis of cooked HAM flours. These results suggested that the increase of enzymatic resistance of HAM flour resulted from the formation of high temperature-resistant ordered structures in starch granules and the starch aggregates less accessible to enzymatic hydrolysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.129419 | DOI Listing |
Carbohydr Polym
September 2024
College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China. Electronic address:
The objective of this work was to study the effects of heat-moisture treatment (HMT) of freshly harvested mature high-amylose maize (HAM) kernels on its starch structure, properties, and digestibility. Freshly harvested HAM kernels were sealed in Pyrex glass bottles and treated at 80 °C, 100 °C, or 120 °C. HMT of HAM kernels had no impact on its starch X-ray diffraction pattern but increased the relative crystallinity.
View Article and Find Full Text PDFInt J Biol Macromol
March 2024
College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China; Food Laboratory of Zhongyuan, Zhengzhou, Henan 450001, China. Electronic address:
Int J Biol Macromol
February 2024
College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, China. Electronic address:
Exp Appl Acarol
June 2021
Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387, Kraków, Poland.
Tyrophagus putrescentiae (Schrank), commonly known as the cereal mite, cheese mite, or ham mite, is a cosmopolitan species reported from various environments in the wild, including soil, plant material and vertebrate nests. It has also been recognized as a common pest of food storages, mycological collections as well as plant and invertebrate laboratory cultures. Laboratory observations indicate that T.
View Article and Find Full Text PDFGenes (Basel)
April 2020
Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea.
Rice varieties with suitable flour-making qualities are required to promote the rice processed-food industry and to boost rice consumption. A rice mutation, Namil(SA)-flo1, produces grains with floury endosperm. Overall, grains with low grain hardness, low starch damage, and fine particle size are more suitable for use in flour processing grains with waxy, dull endosperm with normal grain hardness and a high amylose content.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!