A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Formulation of lactoferrin decorated dextran based chitosan-coated europium metal-organic framework for targeted delivery of curcumin. | LitMetric

Hepatocellular carcinoma (HPTC) currently ranks as the third leading cause of cancer-related mortality, necessitating an advanced formulation strategy. Recently, lactoferrin (Lf) has been utilized as a specific targeting ligand in HPTC due to its high specificity towards the asialoglycoprotein receptor expressed in cancer cells. Therefore, we present the fabrication of an Lf-decorated carboxymethyl dextran-encased chitosan-coated europium metal-organic framework-based nanobioconjugate (Lf-CMD-CS-CUR@Eu-MOF) for targeted curcumin (CUR) delivery. Briefly, CUR was loaded into Eu-MOF, followed by coating cationic 'CS' on the CUR@Eu-MOF surface. Simultaneously, Lf-decorated CMD was prepared via an esterification reaction. Subsequently, Lf-CMD-CS-CUR@Eu-MOF was synthesized using the Maillard reaction. Various spectral characterizations, drug entrapment, drug content, in vitro drug release, biocompatibility and cell cytotoxicity studies were performed. It exhibited an entrapment efficiency of 88.87 ± 2.1 %, a drug content of 3.45 ± 0.98 %, and a drug loading rate of 34.85 ± 0.6 mg/g. Furthermore, the Lf-CMD-CS-CUR@Eu-MOF exhibits excellent biocompatibility with normal cells. The in vitro dissolution study confirmed a release of 78.12 % of 'CUR' in pH 5.8 phosphate buffer (over 120 h), attributed to the controlled release rate by the 'CS' coating on the surface of CUR@Eu-MOF. The BEL-7402 cell line showed concentration-dependent toxicity of nanobioconjugate to cancerous cells. Therefore, when 'Lf' is surface-decorated onto an appropriate polymeric material, it gains the capability to function as a carrier for transporting 'CUR' to the precise target site within HPTC. In conclusion, Lf-CMD incorporated CS-coated Eu-MOF can provide a promising approach for targeted drug delivery in HPTC management.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.129325DOI Listing

Publication Analysis

Top Keywords

chitosan-coated europium
8
europium metal-organic
8
drug content
8
drug
6
formulation lactoferrin
4
lactoferrin decorated
4
decorated dextran
4
dextran based
4
based chitosan-coated
4
metal-organic framework
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!