Traditionally, rodent cancer models have driven preclinical oncology research. However, they do not fully recapitulate characteristics of human cancers, and their size poses challenges when evaluating tools in the interventional oncologists' armamentarium. Pig models, however, have been the gold standard for validating surgical procedures. Their size enables the study of image-guided interventions using human ultrasound (US), computed tomography (CT), and magnetic resonance (MR) imaging platforms. Furthermore, pigs have immunologic features that are similar to those of humans, which can potentially be leveraged for studying immunotherapy. Novel pig models of cancer are being developed, but additional research is required to better understand both the pig immune system and malignancy to enhance the potential for pig models in interventional oncology research. This review aims to address the main advantages and disadvantages of using a pig model for interventional oncology and outline the specific characteristics of pig models that make them more suitable for investigation of locoregional therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jvir.2024.01.005 | DOI Listing |
Dis Model Mech
January 2025
Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.
Hepatocellular carcinoma (HCC) is an aggressive disease with poor prognosis, necessitating preclinical models for evaluating novel therapies. Large animal models are particularly valuable for assessing locoregional therapies, which are widely employed across HCC stages. This study aimed to develop a large animal HCC model with tailored tumor mutations.
View Article and Find Full Text PDFRespir Res
January 2025
Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Department of Biomedical Engineering, Air Force Medical University, Xi'an, 710032, China.
Background: Acute pulmonary embolism represents the third most prevalent cardiovascular pathology, following coronary heart disease and hypertension. Its untreated mortality rate is as high as 20-30%, which represents a significant threat to patient survival. In view of the current lack of real-time monitoring techniques for acute pulmonary embolism, this study primarily investigates the potential of the pulsatility electrical impedance tomography (EIT) technique for the detection and real-time monitoring of acute pulmonary embolism through the collection and imaging of the pulsatile signal of pulmonary blood flow.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland.
Studies conducted so far have shown that nano- and microplastic may disturb the intestinal microenvironment by interacting with the intestinal epithelium and the gut microbiota. Depending on the research model used, the effect on the microbiome is different-an increase or decrease in selected taxa resulting in the development of dysbiosis. Dysbiosis may be associated with intestinal inflammation, development of mental disorders or diabetes.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
African swine fever virus is highly contagious and causes a fatal infectious disease in pigs, resulting in a significant global impact on pork supply. The African swine fever virus RNA polymerase serves as a crucial multifunctional protein complex responsible for genome transcription and regulation. Therefore, it is essential to investigate its structural and functional characteristics for the prevention and control of African swine fever.
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
Xiangya School of Pharmaceutical Science, Central South University, Changsha, 410006, Hunan, China.
Acrylic pressure-sensitive adhesives (PSAs) are widely applied in transdermal drug delivery systems (TDDS). However, the molecular mechanisms underlying the effect of functional groups of PSAs on drug release and transdermal permeation properties remain insufficiently clear. In this study, we investigated the effect of acrylic PSAs' functional groups on the in vitro release and transdermal permeation properties of a model drug guanfacine (GFC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!