LncRNAs exhibit subtype-specific expression, survival associations, and cancer-promoting effects in breast cancer.

Gene

Department of Pathology, Dalhousie University, Halifax, NS B3H4R2, Canada; Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H4R2, Canada; Nova Scotia Health Authority, Halifax, NS B3H1V8, Canada. Electronic address:

Published: April 2024

Long non-coding RNAs (lncRNAs) play important roles in cancer progression, influencing processes such as invasion, metastasis, and drug resistance. Their reported cell type-dependent expression patterns suggest the potential for specialized functions in specific contexts. In breast cancer, lncRNA expression has been associated with different subtypes, highlighting their relevance in disease heterogeneity. However, our understanding of lncRNA function within breast cancer subtypes remains limited, warranting further investigation. We conducted a comprehensive analysis using the TANRIC dataset derived from the TCGA-BRCA cohort, profiling the expression, patient survival associations and immune cell type correlations of 12,727 lncRNAs across subtypes. Our findings revealed subtype-specific associations of lncRNAs with patient survival, tumor infiltrating lymphocytes and other immune cells. Targeting of lncRNAs exhibiting subtype-specific survival associations and expression in a panel of breast cancer cells demonstrated a selective reduction in cell proliferation within their associated subtype, supporting subtype-specific functions of certain lncRNAs. Characterization of HER2 + -specific lncRNA LINC01269 and TNBC-specific lncRNA AL078604.2 showed nuclear localization and altered expression of hundreds of genes enriched in cancer-promoting processes, including apoptosis, cell proliferation and immune cell regulation. This work emphasizes the importance of considering the heterogeneity of breast cancer subtypes and the need for subtype-specific analyses to fully uncover the relevance and potential impact of lncRNAs. Collectively, these findings demonstrate the contribution of lncRNAs to the distinct molecular, prognostic, and cellular composition of breast cancer subtypes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2024.148165DOI Listing

Publication Analysis

Top Keywords

breast cancer
24
survival associations
12
cancer subtypes
12
lncrnas
8
patient survival
8
immune cell
8
cell proliferation
8
cancer
7
expression
6
breast
6

Similar Publications

Ultrasound-responsive nanoparticles for nitric oxide release to inhibit the growth of breast cancer.

Cancer Cell Int

December 2024

Department of Ultrasound, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China.

Gas therapy represents a promising strategy for cancer treatment, with nitric oxide (NO) therapy showing particular potential in tumor therapy. However, ensuring sufficient production of NO remains a significant challenge. Leveraging ultrasound-responsive nanoparticles to promote the release of NO is an emerging way to solve this challenge.

View Article and Find Full Text PDF

Targeting CDK2 to circumvent treatment resistance in HR breast cancer.

Trends Mol Med

December 2024

Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA. Electronic address:

Genetic and epigenetic defects of the p53 system have previously been associated with resistance to CDK4/6 inhibitors in women with HR breast cancer. Recent data from Kudo et al. demonstrate that CDK2-targeting agents may offer an effective strategy to circumvent such resistance by enforcing cellular senescence downstream of RBL2 dephosphorylation.

View Article and Find Full Text PDF

Dabrafenib upregulates hypoglycosylated MUC1 and improves the therapeutic efficacy of Tn-MUC1 CAR-T cells.

Sci Bull (Beijing)

December 2024

Breast Cancer Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China. Electronic address:

View Article and Find Full Text PDF

Computational Pathology Detection of Hypoxia-Induced Morphological Changes in Breast Cancer.

Am J Pathol

December 2024

Department of Computer Science, Faculty of Engineering Sciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom.

Understanding the tumor hypoxic microenvironment is crucial for grasping tumor biology, clinical progression, and treatment responses. This study presents a novel application of AI in computational histopathology to evaluate hypoxia in breast cancer. Weakly Supervised Deep Learning (WSDL) models can accurately detect morphological changes associated with hypoxia in routine Hematoxylin and Eosin (H&E) whole slide images (WSI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!