The progress achieved in anticancer therapy in recent years has been paralleled by an increase in the survival of women with cancer globally. Nonetheless, the gonadotoxic impact of anticancer drugs has led to ovarian failure in treated women. While there are documented cases of successful ovarian tissue transplants resulting in restored fertility and childbirth, challenges persist, including suboptimal functional recovery and limited graft lifespan. Melatonin, an inert hormone primarily secreted by the mammalian pineal gland, exhibits diverse physiological functions, including antioxidative, anti-inflammatory, anti-apoptotic, and angiogenesis-regulating properties. Consequently, researchers have explored melatonin as a modulator to enhance graft function recovery in ovarian transplantation experiments, yielding promising outcomes. This review examines the relevant literature, consolidating findings that underscore the positive effects of melatonin in safeguarding the morphology and structure of transplanted ovarian tissues, facilitating graft function recovery, and extending lifespan. The amassed evidence supports the consideration of melatonin as a prospective protective agent for human ovarian tissue transplantation in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jogoh.2024.102726 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!