Silymarin, a widely-used hepatoprotective agent, has shown antitumor properties in both and animal studies. Currently, there is limited knowledge regarding silymarin's antitelomerase effects on human colorectal cancer and hepatocyte carcinoma cells. In this study, we investigated the antiproliferative and antitelomerase effects of silymarin on four human colorectal cancer and HepG2 hepatocyte carcinoma cell lines. The cell viability and telomerase activity were assessed using MTT and the telomerase repeat amplification protocol assay, respectively. We also investigated the effects of silymarin on the expression of human telomerase reverse transcriptase and its promoter methylation in HepG2 cells by real-time RT-PCR and methylation-specific PCR, respectively. Silymarin treatment inhibited cell proliferation and telomerase activity in all cancer cells. After 24 h of treatment, silymarin exhibited IC values ranging from 19 - 56.3 µg/mL against these cancer cells. A 30-min treatment with silymarin at the IC concentration effectively inhibited telomerase activity in cell-free extracts of both colorectal cancer and hepatocyte carcinoma cells. Treatment of HepG2 cells with 10 and 30 µg/mL of silymarin for 48 h resulted in a decrease in human telomerase reverse transcriptase expression to 75 and 35% of the level observed in the untreated control (p < 0.01), respectively. Treatment with silymarin (10, 30, and 60 µg/mL) for 48 h did not affect human telomerase reverse transcriptase promoter methylation in HepG2 cells. In conclusion, our findings suggest that silymarin inhibits cancer cell growth by directly inhibiting telomerase activity and downregulating its human telomerase reverse transcriptase catalytic subunit. However, silymarin did not affect human telomerase reverse transcriptase promoter methylation at the concentrations of 10 - 60 µg/mL used in this study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/a-2244-8788 | DOI Listing |
Int J Nanomedicine
May 2024
Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
Telomere is a protective structure located at the end of chromosomes of eukaryotes, involved in maintaining the integrity and stability of the genome. Telomeres play an essential role in cancer progression; accordingly, targeting telomere dynamics emerges as an effective approach for the development of cancer therapeutics. Targeting telomere dynamics may work through multifaceted molecular mechanisms; those include the activation of anti-telomerase immune responses, shortening of telomere lengths, induction of telomere dysfunction and constitution of telomerase-responsive drug release systems.
View Article and Find Full Text PDFPlanta Med
April 2024
Department of Biochemistry, Shiraz University of Medical Sciences, School of Medicine, Shiraz, Iran.
Silymarin, a widely-used hepatoprotective agent, has shown antitumor properties in both and animal studies. Currently, there is limited knowledge regarding silymarin's antitelomerase effects on human colorectal cancer and hepatocyte carcinoma cells. In this study, we investigated the antiproliferative and antitelomerase effects of silymarin on four human colorectal cancer and HepG2 hepatocyte carcinoma cell lines.
View Article and Find Full Text PDFBMC Cancer
July 2023
Department of Medical Oncology, University Hospital of Besançon, 25000, Besançon, France.
Background: Several cancer immunotherapies that target the PD-L1/PD-1 pathway show promising clinical activity in patients with hepatocellular carcinoma (HCC). However, the standard of care in first-line treatment with atezolizumab (anti-PD-L1 therapy) in combination with bevacizumab is associated with a limited objective response rate. Telomerase reverse transcriptase (TERT) activation meets the criteria of oncogenic addiction in HCC and could be actionable therapeutic target and a relevant tumor antigen.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
July 2023
Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, India.
Identification of a new G-quadruplex ligand having anti-telomerase activity would be a promising strategy for cancer therapy. The screened compound from ZINC database using docking studies was experimentally verified for its binding with three different telomeric G-quadruplex DNA sequences and anti-telomerase activity in A549 cells. Identified compound is an intrinsic fluorescent molecule, permeable to live cells and has a higher affinity to 22AG out of three different telomeric G-quadruplex DNA.
View Article and Find Full Text PDFAsian Pac J Cancer Prev
January 2023
Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.
Objective: The telomerase gene is overexpressed in the majority of tumors and cancers compared to normal and healthy cells, and on the other hand, this enzymatic protein is overactive, therefore, the telomerase enzyme is considered a primary target for diagnostic and therapeutic purposes in most cancers. This has been hypothesized that Helenalin has anti-telomerase activity in a wide range of cancers and Tumor tissues. In this study, we investigated the inhibitory effect of helenalin extract on telomerase gene expression in the T47D breast cancer cell line.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!