Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The field of bitemark analysis involves examining physical alterations in a medium resulting from contact with teeth and other oral structures. Various techniques, such as 2D and 3D imaging, have been developed in recent decades to ensure precise analysis of bitemarks. This study assessed the precision of using a smartphone camera to generate 3D models of bitemark patterns. A 3D model of the bite mark pattern was created using 3Shape TRIOS and a smartphone camera combined with monoscopic photogrammetry. The mesiodistal dimensions of the anterior teeth were measured using Rapidform Explorer and OrtogOnBlender, and the collected data were analyzed using IBM® SPSS® Statistics version 23.0. The mean mesiodistal dimension of the anterior teeth, as measured on the 3D model from 3Shape TRIOS and smartphone cameras, was found to be 6.95 ± 0.7667 mm and 6.94 ± 0.7639 mm, respectively. Statistical analysis revealed no significant difference between the two measurement methods, p > 0.05. The outcomes derived from this study unequivocally illustrate that a smartphone camera possessing the specific parameters detailed in this study can create a 3D representation of bite patterns with an accuracy level on par with the outputs of a 3D intraoral camera. These findings underscore the promising trajectory of merging smartphone cameras and monoscopic photogrammetry techniques, positioning them as a budget-friendly avenue for 3D bitemark analysis. Notably, the monoscopic photogrammetry methodology assumes substantial significance within forensic odontology due to its capacity for precise 3D reconstructions and the preservation of critical measurement data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.legalmed.2024.102399 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!