Soil erosion is a significant environmental issue worldwide, particularly in island regions where land resources are exceedingly scarce. Biological soil crusts play a crucial role in mitigating soil erosion, yet the precise effect and mechanism of biological soil crusts against erosion remain ambiguous. In this study, biological soil crusts at various developmental stages from a tropical coral island in the South China Sea were chosen to investigate the role of carbonic anhydrase in mitigating erosion. A cohesive strength meter, real-time quantitative PCR, and 16S rRNA gene high-throughput sequencing were employed to assess variations in soil antiscouribility as well as bacterial abundance and composition during the formation and development of biological soil crusts. Scanning electron microscopy was utilized to detect carbonates induced by bacterial carbonic anhydrase and elucidate their role in the solidification of sand particles. The findings indicate that the formation and development of biological soil crusts significantly enhance anti-scouribility. Comparison to those of bare coral sand, the shear stress increased from 0.35 to 1.11 N/m in the dark biocrusts. Moreover, significantly elevated carbonic anhydrase activity was observed in biological soil crusts, demonstrating a positive correlation with antiscouribility. In addition, there was a significant increase in bacterial abundance within the biological soil crusts. The enrichment of Cyanobacteriales and Chloroflexales potentially contributed to the increased carbonic anhydrase activity and antiscouribility. Furthermore, three cyanobacterial strains with carbonic anhydrase activity were isolated from biological soil crusts and subsequently confirmed to enhance sand solidification through microbial carbonate precipitation. This study presents initial evidence for the role of microbial carbonic anhydrase in enhancing the antiscouribility of biological soil crusts during their formation and development. These findings offer novel insights into the functional and mechanistic dimensions underlying the mitigation of soil erosion facilitated by biological soil crusts, which are valuable for implementing sustainable biorestoration and environmental management technologies to prevent soil erosion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.120085 | DOI Listing |
J Chem Ecol
January 2025
Department of Nematology, University of California Riverside, Riverside, CA, USA.
Plants produce defensive toxins to deter herbivores. In response, some specialized herbivores evolved resistance and even the capacity to sequester toxins, affecting interactions at higher trophic levels. Here, we test the hypothesis that potential natural enemies of specialized herbivores are differentially affected by plant toxins depending on their level of adaptation to the plant-herbivore system.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032, Camerino (MC), Italy.
Sustainable soil management is essential to conserve soil biodiversity and its provision of vital ecosystem services. The EU Biodiversity Strategy for 2030 highlights the key role of organic farming and land protection in halting biodiversity loss, including edaphic biodiversity. To assess the effectiveness of the proposed measures, a 1-year study was conducted in spring 2022 to determine the soil quality of three organically managed agroecosystems and four sites for each: arable lands, olive groves, and vineyards in the Conero Park, using the arthropod-based Biological Soil Quality Index (QBS-ar) and also considering soil chemical-physical characteristics.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, APC Road, Kolkata, 700 009, India.
Melatonin increases Pb tolerance in P. ovata seedlings via the regulation of growth and stress-related phytohormones, ROS scavenging and genes responsible for melatonin synthesis, metal chelation, and stress defense. Lead (Pb) is a highly toxic heavy metal that accumulates in plants through soil and air contamination and impairs its plant growth and development.
View Article and Find Full Text PDFChemistry
January 2025
State Key Laboratory of NBC Protection for Civilian, State Key Laboratory of NBC Protection for Civilian,, Beijing, CHINA.
The root ducts play an important role in the plant's transport of nutrients from the soil. Based on the selective transport characteristics of plant roots, amino pillar[6]arene bionic porous root sub-nano channel membrane were constructed to remove Imazamox. Imazamox (IM) is an effective imidazolinone herbicide frequently utilized in soybean fields to control a wide range of annual grasses and broad-leaved weeds.
View Article and Find Full Text PDFmBio
January 2025
Department of Biological Sciences, College of Natural & Applied Sciences, University of Alberta, Edmonton, Alberta, Canada.
Bacteriophages (phages) are being investigated as potential biocontrol agents for the suppression of bacterial diseases in cultivated crops. Jumbo bacteriophages, which possess genomic DNA larger than 200 kbp, generally have a broader host range than other phages and therefore would be useful as biocontrol agents against a wide range of bacterial strains. Thus, the characterization of novel jumbo phages specific for agricultural pathogens would be of importance for the development of phage biocontrol strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!