Antibody modification is a common method for endowing drug carriers with the ability to target specific cells. Recent studies suggest that the efficacy of these antibody-modified drug carriers is closely related to their physicochemical properties, such as size, shape, stiffness, charge, and surface chemistry. In this study, we functionalized microcapsules with antibodies to investigate the combined effect of shape and stiffness on their targeting ability. We synthesized hollow microcapsules, both spherical and rod-shaped, with adjustable stiffness using calcium carbonate particles as templates and silk fibroin (SF) as the shell material. These microcapsules were then functionalized with trastuzumab (TTZ) to enhance targeting capabilities. Our analysis revealed that increasing stiffness significantly improved the specificity and avidity of TTZ-coated rod-shaped microcapsules, but not spherical ones, indicating a strong shape-dependent influence of stiffness on these properties. Additionally, we explored the mechanisms of endocytosis using various inhibitors and found that both macropinocytosis and clathrin played critical roles in the cellular uptake of microcapsules. Furthermore, we loaded microcapsules with doxorubicin (DOX) to evaluate their anti-tumor efficacy. The stiffest TTZ-coated, DOX-loaded rod-shaped microcapsules demonstrated the most potent anti-tumor effects on BT-474 cells and the highest uptake in BT-474 3D spheroids. This research contributes to the development of more effective microcapsule-based target delivery systems and the realization of the full potential of microcapsule drug delivery systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2024.113752 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!