Synthesis and evaluation of aromatic stationary phases based on linear solvation energy relationship model for expanded application in supercritical fluid chromatography.

J Chromatogr A

Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China; Key Lab of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China.

Published: February 2024

In the last decade, the separation application based on aromatic stationary phases has been demonstrated in supercritical fluid chromatography (SFC). In this paper, four aromatic stationary phases involving aniline (S-aniline), 1-aminonaphthalene (S-1-ami-naph), 1-aminoanthracene (S-1-ami-anth) and 1-aminopyrene (S-1-ami-py) were synthesized based on full porous particles (FPP) silica, which were not end-capped for providing extra electrostatic interaction. Retention mechanism of these phases in SFC was investigated using a linear solvation energy relationship (LSER) model. The aromatic stationary phases with five positive parameters (a, b, s, e and d) can provide hydrogen bonding, π-π, dipole-dipole and cation exchange interactions, which belong to the moderate polar phases. The LSER results obtained using routine test solutes demonstrated that the aforementioned interactions of four aromatic stationary phases were influenced by the type and bonding density of the ligand, but to a certain extent. Furthermore, the LSER data verified that the S-1-ami-anth column based on full porous particles silica had higher cation exchange capacity (d value), compared to the commercialized 1-AA column (based on the ethylene-bridged hybrid particles). The relationship between the d value and SFC additive was quantitatively proved so as to regulate electrostatic interaction reasonably. This value was greatly increased by phosphoric acid, slightly increased by trifluoroacetic acid and formic acid, but significantly reduced by ammonium formate and diethylamine. Taking the S-1-ami-naph column as an example, better peek shape of the flavonoids was obtained after the addition of 0.1 % phosphoric acid in MeOH while isoquinoline alkaloids were eluted successfully within 11 min after adding 0.1 % diethylamine in MeOH. Combined with the unique π-π interaction and controllable electrostatic interaction, the aromatic stationary phases in this study have been proven to have expandable application potential in SFC separation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2024.464640DOI Listing

Publication Analysis

Top Keywords

aromatic stationary
24
stationary phases
24
electrostatic interaction
12
phases
8
linear solvation
8
solvation energy
8
energy relationship
8
supercritical fluid
8
fluid chromatography
8
based full
8

Similar Publications

A chiral porous organic polymer (cPOP) was synthesized through nucleophilic substitution polymerization between dichloromaleimide and aromatic amine. This cPOP was used as a new chiral stationary phase (CSP) for gas chromatography (GC) chiral separation. In this work, we first used this cPOP as the CSP for gas chromatography to investigate its ability to separate racemic mixtures, including amino acid derivatives, chiral alcohols, aldehydes, alkanes, ketones, esters, and organic acids.

View Article and Find Full Text PDF

Volatile Distribution in Flowers of L. by HS-SPME-GC Technique and Enantiomeric Separation Data.

Plants (Basel)

November 2024

Biodiversidad de Ecosistemas Tropicales-BIETROP, Herbario HUTPL, Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja (UTPL), San Cayetano s/n, Loja 1101608, Ecuador.

L., commonly known as sweet pea, is a plant with a distinctive aroma that can develop in various habitats. An analysis of the aromatic profile of the species was conducted using the HS-SPME (solid-phase microextraction headspace) technique.

View Article and Find Full Text PDF

Glutathione-functionalized covalent organic frameworks@silica as a hydrophilic-hydrophobic balanced mixed-mode stationary phase for highly efficient separation of compounds with a wide range of polarity.

Anal Chim Acta

January 2025

School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Key Laboratory of Accurate Separation and Analysis for Complex Matrix of Zhengzhou City, Zhengzhou, 450001, PR China. Electronic address:

Background: Covalent organic frameworks (COFs) are a highly promising stationary phase for high-performance liquid chromatography (HPLC), but the separation of polar compounds is limited by their low hydrophilicity. Therefore, it is crucial to develop novel COFs-based stationary phases with balanced hydrophilicity-hydrophobicity for the efficient separation of different polar compounds.

Results: In this paper, glutathione (GSH)-functionalized COFs@silica microspheres (GSH-COFs@SiO) were synthesized via a two-step, post-synthesis modification strategy.

View Article and Find Full Text PDF

Molecular Selectivity of a pH-Tunable Lecithin-Modified Zirconia Stationary Phase.

ACS Omega

November 2024

Graduate School of Science and Technology, Kochi University, 2-5-1 Akebono, Kochi 780-8520, Japan.

We synthesized lecithin-modified zirconia (LMZ) as an adsorbent, solid-phase extractant, and stationary phase for organic compounds such as organic acids or amino acids. The molecular selectivity of LMZ was evaluated through high-performance liquid chromatography (HPLC). LMZ exhibits electrostatic and hydrophobic interactions with organic compounds that depend on the pH of the mobile phase.

View Article and Find Full Text PDF

"Click" post-synthesis of chiral microporous organic network for chiral high-performance liquid chromatographic separation.

Anal Chim Acta

December 2024

School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China. Electronic address:

Article Synopsis
  • Chiral separation is crucial in analytical chemistry, and while high-performance liquid chromatography (HPLC) is an effective method, the use of chiral microporous organic networks (MONs) in this context has not been explored previously.
  • The study introduces MON@SiO-L-Cys, a newly developed chiral stationary phase that shows promising results in separating various chiral compounds with high resolution and selectivity, outperforming some commercial chiral columns.
  • This research highlights the potential of chiral MONs in HPLC applications and suggests innovative approaches for future chiral separations using these materials.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!