The study of the mechanisms affecting single stress factor impact on long-term metabolic rearrangements is necessary for understanding the principles of plant protective reactions. The objective of the study was to assess the involvement of UV-C-induced genomic instability in induction рlant long-term protective reactions. The study was carried out on two genotypes of chamomile, Perlyna Lisostepu (PL) variety and its mutant, using UV-C pre-sowing seed radiation exposure at dose levels 5-15 kJ/m. Multiple DNA damages under different exposure doses were studied on plant tissues during the flowering stage using - ISSR-RAPD DNA marker PCR. In the cluster analysis of changes within the amplicon spectra as an integral group the Jacquard similarity index was used. The results of the study suggest that genomic instability is a link between the direct effects of UV-C exposure and stimulation of metabolic rearrangements at the final stages of ontogeny. A hypothetical scheme for the transformation of primary UV-C DNA damage into long-term maintenance of genomic instability signs has been proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jplph.2024.154171 | DOI Listing |
PLoS Biol
January 2025
RNA Virus Replication Laboratory, The Francis Crick Institute, London, United Kingdom.
Coronaviruses express their structural and accessory genes via a set of subgenomic RNAs, whose synthesis is directed by transcription regulatory sequences (TRSs) in the 5' genomic leader and upstream of each body open reading frame. In SARS-CoV-2, the TRS has the consensus AAACGAAC; upon searching for emergence of this motif in the global SARS-CoV-2 sequences, we find that it evolves frequently, especially in the 3' end of the genome. We show well-supported examples upstream of the Spike gene-within the nsp16 coding region of ORF1b-which is expressed during human infection, and upstream of the canonical Envelope gene TRS, both of which have evolved convergently in multiple lineages.
View Article and Find Full Text PDFInt J Colorectal Dis
January 2025
Internal Medicine, Jilin Cancer Hospital, Changchun, China.
Purpose: This phase II study is designed to evaluate the combination therapy involving suvemcitug and envafolimab with FOLFIRI in microsatellite-stable or mismatch repair-proficient (MSS/pMMR) colorectal cancer (CRC) in the second-line treatment setting.
Methods: This study is a non-randomized, open-label prospective study comprising multiple cohorts (NCT05148195). Here, we only report the data from the CRC cohort.
Biotechnol J
January 2025
Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA.
The implementation of site-specific integration (SSI) systems in Chinese hamster ovary (CHO) cells for the production of monoclonal antibodies (mAbs) can alleviate concerns associated with production instability and reduce cell line development timelines. SSI cell line performance is driven by the interaction between genomic integration location, clonal background, and the transgene expression cassette, requiring optimization of all three parameters to maximize productivity. Systematic comparison of these parameters has been hindered by SSI platforms involving low-throughput enrichment strategies, such as cell sorting.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Pathology, Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea.
Background: Gastric cancer remains a significant global health challenge, characterized by poor prognosis and high mortality rates. Mitotic integrity and genomic stability are crucial in maintaining cellular homeostasis and preventing tumorigenesis. The transcription factor NKX6.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Hematopoietic Biology & Malignancy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
Cells undergo tens of thousands of DNA-damaging events each day. Defects in repairing double-stranded breaks (DSBs) can lead to genomic instability, contributing to cancer, genetic disorders, immunological diseases, and developmental defects. Cohesin, a multi-subunit protein complex, plays a crucial role in both chromosome organization and DNA repair by creating architectural loops through chromatin extrusion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!