A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session61qqbct6r055237iet0vt5c4mr5au9hf): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

Investing in vision: Innovation in retinal therapeutics and the influence on venture capital investment. | LitMetric

Investing in vision: Innovation in retinal therapeutics and the influence on venture capital investment.

Prog Retin Eye Res

Institute for Ophthalmic Research, Department for Ophthalmology, University Medical Center, Eberhard Karls University of Tübingen, Tübingen, Germany; University Eye Clinic, University Hospital Tübingen, Tübingen, Germany; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK.

Published: March 2024

AI Article Synopsis

  • The retinal therapeutics field has significantly evolved since the first anti-VEGF therapy was approved in 2004, with a focus on a variety of retinal diseases and improved treatment options, resulting in nearly $10 billion in investments over two decades.
  • Treatments have shifted from competing against anti-VEGF therapies to finding ways to reduce patient treatment burden, alongside new initiatives targeting conditions like dry AMD and Retinitis pigmentosa.
  • The review highlights successful drug approvals, ongoing challenges, investment dynamics, and future strategies in retinal therapeutics, including innovative approaches like cell-based therapies and gene editing.

Article Abstract

Since the groundbreaking approval of the first anti-VEGF therapy in 2004, the retinal therapeutics field has undergone a remarkable transformation, witnessing a surge in novel, disease-modifying therapeutics for a broad spectrum of retinal diseases, extending beyond exudative VEGF-driven conditions. The surge in scientific advancement and the pressing, unmet, medical need have captured the attention of venture capital investors, who have collectively invested close to $10 billion in research and development of new retinal therapeutics between 2004 and 2023. Notably, the field of exudative diseases has gradually shifted away from trying to outcompete anti-VEGF therapeutics towards lowering the overall treatment burden by reducing injection frequency. Simultaneously, a new era has emerged in the non-exudative field, targeting prevalent conditions like dry AMD and rare indications such as Retinitis pigmentosa. This has led to promising drug candidates in development, culminating in the landmark approval of Luxturna for a rare form of Retinitis pigmentosa. The validation of new mechanisms, such as the complement pathway in dry AMD has paved the way for the approvals of Syvovre (Apellis) and Izervay (Iveric/Astellas), marking the first two therapies for this condition. In this comprehensive review, we share our view on the cumulative lessons from the past two decades in developing retinal therapeutics, covering both positive achievements and challenges. We also contextualize the investments, strategic partnering deals, and acquisitions of biotech companies, pharmaceutical companies venture capital investors in retinal therapeutics, respectively. Finally, we provide an outlook and potentially a forward-looking roadmap on novel retinal therapeutics, highlighting the emergence of potential new intervention strategies, such as cell-based therapies, gene editing, and combination therapies. We conclude that upcoming developments have the potential to further stimulate venture capital investments, which ultimately could facilitate the development and delivery of new therapies to patients in need.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.preteyeres.2024.101243DOI Listing

Publication Analysis

Top Keywords

retinal therapeutics
24
venture capital
16
therapeutics
8
capital investors
8
dry amd
8
retinitis pigmentosa
8
retinal
7
investing vision
4
vision innovation
4
innovation retinal
4

Similar Publications

Background: Both rhabdomyosarcoma (RMS) and central retinal artery occlusion (CRAO) are rare medical diseases, and their simultaneous occurrence in the same patient is extraordinarily uncommon. This study presents a comprehensive overview of the clinical manifestations, diagnostic imaging results, and therapeutic interventions of a patient with both conditions.

Case Summary: In this report, we present a 30-year-old male who presented with significant protrusion, pain and vision loss and was diagnosed with RMS in the orbit and sinus with CRAO.

View Article and Find Full Text PDF

Artificial intelligence-enabled discovery of a RIPK3 inhibitor with neuroprotective effects in an acute glaucoma mouse model.

Chin Med J (Engl)

December 2024

Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong 510530, China.

Background: Retinal ganglion cell (RGC) death caused by acute ocular hypertension is an important characteristic of acute glaucoma. Receptor-interacting protein kinase 3 (RIPK3) that mediates necroptosis is a potential therapeutic target for RGC death. However, the current understanding of the targeting agents and mechanisms of RIPK3 in the treatment of glaucoma remains limited.

View Article and Find Full Text PDF

Introduction: Annual screening for hydroxychloroquine (HCQ) retinopathy is recommended, and electroretinography (ERG) is considered a gold-standard test, but there are screening shortfalls and standard ERG is burdensome and has limited availability. Newer, portable ERG devices using skin-based electrodes may increase screening capacity but need validation. This study aims to determine initial device accuracies and feasibility of further research.

View Article and Find Full Text PDF

Organelles such as mitochondria, lysosomes, peroxisomes, and the endoplasmic reticulum form highly dynamic cellular networks and exchange information through sites of physical contact. While each organelle performs unique functions, this inter-organelle crosstalk helps maintain cell homeostasis. Age-related macular degeneration (AMD) is a devastating blinding disease strongly associated with mitochondrial dysfunction, oxidative stress, and decreased clearance of cellular debris in the retinal pigment epithelium (RPE).

View Article and Find Full Text PDF

The number of people suffering from type 2 diabetes (DM2) is increasing and over 30 percent of DM2 patients will develop diabetic retinopathy (DR). Available therapeutic approaches for DR have their limitations. It is of great significance to search for other effective alternate therapeutic approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!