A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Efficient removal of triclosan from water through activated carbon adsorption and photodegradation processes. | LitMetric

AI Article Synopsis

  • This study explored using activated carbons (ACs) and UV light to reduce triclosan (TCS) levels in water, focusing on how pH affects adsorption capacity, with the highest capacity at pH 7 for different AC types.
  • Results indicated that ACs like Darco and Norit effectively adsorb TCS, while UV light proved to be an efficient method for photodegrading TCS, achieving over 80% removal.
  • The research concluded that both adsorption and photodegradation methods can safely reduce TCS concentrations in water to non-hazardous levels, making them practical solutions for water treatment.

Article Abstract

This study investigated the application of adsorption with activated carbons (ACs) and photodegradation to reduce the concentration of triclosan (TCS) in aqueous solutions. Concerning adsorption, ACs (Darco, Norit, and F400) were characterised and batch experiments were performed to elucidate the effect of pH on equilibrium. The results showed that at pH = 7, the maximum adsorption capacity of TCS onto the ACs was 18.5 mg g for Darco, 16.0 mg g for Norit, and 15.5 mg g for F400. The diffusional kinetic model allowed an adequate interpretation of the experimental data. The effective diffusivity varied and increased with the amount of TCS adsorbed, from 1.06 to 1.68 × 10 cm s. In the case of photodegradation, it was possible to ensure that the triclosan molecule was sensitive to UV light of 254 nm because the removal was over 80 % using UV light. The removal of TCS increased in the presence of sulfate radicals. It was possible to identify 2,4-dichlorophenol as one of the photolytic degradation products of triclosan, which does not represent an environmental hazard at low concentrations of triclosan in water. These results confirm that the use of AC Darco, Norit, and F400 and that photodegradation processes with UV light and persulfate radicals are effective in removing TCS from water, reaching concentration levels that do not constitute a risk to human health or environmental hazard. Both methods effectively eliminate pollutants with relatively easy techniques to implement.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2024.118162DOI Listing

Publication Analysis

Top Keywords

triclosan water
8
photodegradation processes
8
darco norit
8
norit f400
8
environmental hazard
8
triclosan
5
tcs
5
efficient removal
4
removal triclosan
4
water activated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!