Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
HIV-1 based lentiviral viruses are considered powerful and versatile gene therapy vectors to deliver therapeutic genes to patients with hereditary or acquired diseases. These vectors can efficiently transduce a variety of cell types when dividing or non-dividing to provide permanent delivery and long-term gene expression. Demand for scalable manufacturing protocols able to generate enough high titre vector for widespread use of this technology is increasing and considerable efforts to improve vector production cost-effectively, is ongoing. Current methods for LV production mainly use transient transfection of producer cell lines. Cells can be grown at scale, either in 2D relying on culturing producer cells in multi-tray flask cell culture factories or in roller bottles or can be adapted to grow in 3D suspensions in large batch fermenters. This suits rapid production and testing of new vector constructs pre-clinically for their efficacy, particle titre and safety. In this study, we sought to improve lentiviral titre over time by testing two alternative commercially available transfection reagents Fugene® 6 and Genejuice® with the commonly used polycation, polyethyleneimine. Our aim was to identify less cytotoxic transfection reagents that could be used to generate LV particles at high titre past the often used 72 h period when vector is usually collected before producer cell death is caused due to post transfection cytotoxicity. We show that LV could be produced in extended culture using Genejuice® and even by transfected cells in glass flasks in suspension. Because this delivery agent is less toxic to 293 T producer cells, following optimisation of transfection we found that LV can be harvested for more than 10 days at high titre. Using our protocol, titres of 10 TU/ml and 10 TU/ml were routinely reached via traditional monolayer conditions or suspension cultures, respectively. We propose, this simple change in vector production enables large volumes of high titre vector to be produced, cost effectively for non-clinical in vivo and in vitro applications or for more stringent downstream clinical grade vector purification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jviromet.2024.114884 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!