Lightweight, porous cellulose foam is an attractive alternative to traditional petroleum-based products, but the intrinsic flammability impedes its use in construction. Herein, an environmentally friendly strategy for scalable fabrication of flame-retardant bamboo pulp foam (BPF) using a foam-forming technique followed by low-cost ambient drying is reported. In the process, a hierarchical structure of halloysite nanotubes (HNT) was decorated onto bamboo pulp fibers through layer-by-layer assembling of chitosan (CS) and phytic acid (PA). This modification retained the highly porous microcellular structure of the resultant BPF (92 %-98 %). It improved its compressive strength by 228.01 % at 50 % strain, endowing this foam with desired thermal insulation properties and sound absorption coefficient comparable to commercial products. More importantly, this foam possessed exceptional flame retardancy (47.05 % reduction in the total heat release and 95.24 % reduction in the total smoke production) in cone calorimetry, and it showed excellent extinguishing performance, indicating considerably enhanced fire safety. These encouraging results suggest that the flame retardant BPF has the potential to serve as a renewable and cost-effective alternative to traditional foam for applications in acoustic and thermal insulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.129393 | DOI Listing |
Crown ether is widely used in water purification because of its ring structure and good selective adsorption of specific heavy metals. However, its high cost and difficulty in recycling limit the purification of heavy metals in water. The anisotropic [2,4]-dibenzo-18-crown-6-modified bamboo pulp aerogel (DB18C6/PA) is successfully synthesized by microwave irradiation and directional freezing technology.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:
Nanomaterials (Basel)
November 2024
College of Textile and Clothing, Dezhou University, Dezhou 253026, China.
China is the country with the most abundant bamboo resources in the world. Using bamboo as a raw material for pulping and papermaking can save a lot of wood and protect forests. Bamboo pulping enterprises mostly adopt sulfate processes to produce a large amount of black liquor (BL), which contains monosaccharides, polysaccharides, oligosaccharides, pectin, lignin, etc.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:
Cooking black liquors generated during the pulping process have been recognized as promising electrode materials which can be directly applied as carbon sources. This paper investigates the relationship between the microstructure of lignin and the electrochemical properties of carbon derived from black liquor obtained from various plants, including softwood, hardwood, and grass. It was found that eucalyptus black liquor, abundant in methoxy groups, has a notable impact on the performance of carbon materials compared to black liquor derived from Pinus sylvestris and bamboo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!