Rapid diagnostics of any gene mutations related to organ loss is highly demanded now-a days to consume time as well to reduce cost. Currently, Surface enhanced Raman spectroscopy (SERS) is evolved to be a rapid investigating tool to screen gene mutations down to single molecule sensing with regard to the design and development of substrates used for sensing. The current research focuses on particular towards direct detection of deafness mutations associated with single and dual sites related to GJB2 gene. SERS Sensor construction is achieved with plasmonic silver nanoarrays on Si (SNA/Si) substrate by effortless wet chemical methods (Reaction time: 35 s; Concentration: 20 mM). The fabricated SNA/Si facilitates direct sensing of the deafness mutations of GJB2 gene in single as well dual sites with the enhancement of plasmonic hotspots. Normal DNA DMF-33 (GGGGGG) as well as Mutant DNA at single site DMF-9 (GGGGG) were validated by their guanine fingerprint Raman bands intensity quenching for mutant DNA DMF-9 at 1366 cm and 1595 cm respectively. Likewise, double mutations in DMF-19 are substitutional from G to A, portrayed highly intense fingerprint of Adenine Raman bands at 739 cm, 1432 cm, 1572 cm in comparison to normal DNA (DMF-33). The findings were well analyzed with Raman mapping data which carries almost 625 scans for each DNA sample. The fabricated sensor exhibited the highest sensitivity towards DNA detection down to 0.1 pg/μL with utmost reproducibility. The current study aims to bring in creation of library files for deafness mutations to facilitate clinical diagnostics in a simple and rapid approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.129381 | DOI Listing |
iScience
January 2025
Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA.
Mutations in the human genes encoding the endothelin ligand-receptor pair and cause Waardenburg-Shah syndrome (WS4), which includes congenital hearing impairment. The current explanation for auditory dysfunction is defective migration of neural crest-derived melanocytes to the inner ear. We explored the role of endothelin signaling in auditory development in mice using neural crest-specific and placode-specific mutation plus related genetic resources.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto 390-8621, Japan.
Background/objectives: The gene is responsible for autosomal recessive non-syndromic sensorineural hearing loss and is assigned as DFNB18B. To date, 44 causative variants have been reported to cause non-syndromic hearing loss. However, the detailed clinical features for -associated hearing loss remain unclear.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto 390-8621, Japan.
Background/objectives: A heterozygous mutation in the gene is responsible for autosomal dominant non-syndromic hearing loss (DFNA6/14/38) and Wolfram-like syndrome, which is characterized by bilateral sensorineural hearing loss with optic atrophy and/or diabetes mellitus. However, detailed clinical features for the patients with the heterozygous p.A684V variant remain unknown.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.
Assembly of actin-based stereocilia is critical for cochlear hair cells to detect sound. To tune their mechanosensivity, stereocilia form bundles composed of graded rows of ascending height, necessitating the precise control of actin polymerization. Myosin 15 (MYO15A) drives hair bundle development by delivering critical proteins to growing stereocilia that regulate actin polymerization via an unknown mechanism.
View Article and Find Full Text PDFZhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi
January 2025
Department of Laboratory, Wenzhou People's Hospital, Wenzhou Third Clinical College of Wenzhou Medical University, Wenzhou Maternal and Child Health Hospital, Wenzhou325027, China.
To investigate the feasibility of prime editor (PE) and adenine base editor (ABE) for correction the pathogenic variant of the human deafness gene c.1229C>T. From March 2023 to April 2024, prime editing guide RNA (pegRNA) expression vectors as well as single guide RNA (sgRNA) were designed and constructed for the c.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!